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1. Introduction

0DWI In this chapter we study the different and discriminant of locally quasi-finite mor-
phisms of schemes. A good reference for some of this material is [Kun86].

Given a quasi-finite morphism f : Y → X of Noetherian schemes there is a relative
dualizing module ωY/X . In Section 2 we construct this module from scratch, using
Zariski’s main theorem and étale localization methods. The key property is that
given a diagram

Y ′

f ′

��

g′
// Y

f

��
X ′

g // X

with g : X ′ → X flat, Y ′ ⊂ X ′ ×X Y open, and f ′ : Y ′ → X ′ finite, then there is a
canonical isomorphism

f ′∗(g
′)∗ωY/X = HomOX′ (f

′
∗OY ′ ,OX′)

as sheaves of f ′∗OY ′ -modules. In Section 4 we prove that if f is flat, then there is a
canonical global section τY/X ∈ H0(Y, ωY/X) which for every commutative diagram
as above maps (g′)∗τY/X to the trace map of Section 3 for the finite locally free

This is a chapter of the Stacks Project, version 1be5a612, compiled on Jul 19, 2017.

1



DISCRIMINANTS AND DIFFERENTS 2

morphism f ′. In Section 8 we define the different for a flat quasi-finite morphism
of Noetherian schemes as the annihilator of the cokernel of τY/X : OX → ωY/X .

The main goal of this chapter is to prove that for quasi-finite syntomic1 f the
different agrees with the Kähler different. The Kähler different is the zeroth fitting
ideal of ΩY/X , see Section 6. This agreement is not obvious; we use a slick argument
due to Tate, see Section 10. On the way we also discuss the Noether different and
the Dedekind different.

Only in the end of this chapter, see Sections 12 and 13, do we make the link with
the more advanced material on duality for schemes.

2. Dualizing modules for quasi-finite ring maps

0BUK Let A→ B be a quasi-finite homomorphism of Noetherian rings. By Zariski’s main
theorem (Algebra, Lemma 122.15) there exists a factorization A → B′ → B with
A→ B′ finite and B′ → B inducing an open immersion of spectra. We set

(2.0.1)0BSZ ωB/A = HomA(B′, A)⊗B′ B

in this situation. The reader can think of this as a kind of relative dualizing module,
see Lemmas 12.1 and 2.12. In this section we will show by elementary commutative
algebra methods that ωB/A is independent of the choice of the factorization and that
formation of ωB/A commutes with flat base change. To help prove the independence
of factorizations we compare two given factorizations.

Lemma 2.1.0BT0 Let A → B be a quasi-finite ring map. Given two factorizations
A→ B′ → B and A→ B′′ → B with A→ B′ and A→ B′′ finite and Spec(B)→
Spec(B′) and Spec(B)→ Spec(B′′) open immersions, there exists an A-subalgebra
B′′′ ⊂ B finite over A such that Spec(B) → Spec(B′′′) an open immersion and
B′ → B and B′′ → B factor through B′′′.

Proof. Let B′′′ ⊂ B be the A-subalgebra generated by the images of B′ → B and
B′′ → B. As B′ and B′′ are each generated by finitely many elements integral over
A, we see that B′′′ is generated by finitely many elements integral over A and we
conclude that B′′′ is finite over A (Algebra, Lemma 35.5). Consider the maps

B = B′ ⊗B′ B → B′′′ ⊗B′ B → B ⊗B′ B = B

The final equality holds because Spec(B) → Spec(B′) is an open immersion (and
hence a monomorphism). The second arrow is injective as B′ → B is flat. Hence
both arrows are isomorphisms. This means that

Spec(B′′′)

��

Spec(B)

��

oo

Spec(B′) Spec(B)oo

is cartesian. Since the base change of an open immersion is an open immersion we
conclude. �

Lemma 2.2.0BT1 The module (2.0.1) is well defined, i.e., independent of the choice
of the factorization.

1AKA flat and lci.

http://stacks.math.columbia.edu/tag/0BT0
http://stacks.math.columbia.edu/tag/0BT1
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Proof. Let B′, B′′, B′′′ be as in Lemma 2.1. We obtain a canonical map

ω′′′ = HomA(B′′′, A)⊗B′′′ B −→ HomA(B′, A)⊗B′ B = ω′

and a similar one involving B′′. If we show these maps are isomorphisms then the
lemma is proved. Let g ∈ B′ be an element such that B′g → Bg is an isomorphism
and hence B′g → (B′′′)g → Bg are isomorphisms. It suffices to show that (ω′′′)g →
ω′g is an isomorphism. The kernel and cokernel of the ring map B′ → B′′′ are finite
A-modules and g-power torsion. Hence they are annihilated by a power of g. This
easily implies the result. �

Lemma 2.3.0BT2 Let A→ B be a quasi-finite map of Noetherian rings.

(1) If A→ B factors as A→ Af → B for some f ∈ A, then ωB/A = ωB/Af .
(2) If g ∈ B, then (ωB/A)g = ωBg/A.
(3) If f ∈ A, then ωBf/Af = (ωB/A)f .

Proof. Say A → B′ → B is a factorization with A → B′ finite and Spec(B) →
Spec(B′) an open immersion. In case (1) we may use the factorization Af → B′f →
B to compute ωB/Af and use Algebra, Lemma 10.2. In case (2) use the factorization
A → B′ → Bg to see the result. Part (3) follows from a combination of (1) and
(2). �

Let A → B be a quasi-finite ring map of Noetherian rings, let A → A1 be an
arbitrary ring map of Noetherian rings, and set B1 = B ⊗A A1. We obtain a
cocartesian diagram

B // B1

A

OO

// A1

OO

Observe that A1 → B1 is quasi-finite as well (Algebra, Lemma 121.8). In this
situation we will define a canonical B-linear base change map

(2.3.1)0BVB ωB/A −→ ωB1/A1

Namely, we choose a factorization A → B′ → B as in the construction of ωB/A.
Then B′1 = B′⊗AA1 is finite over A1 and we can use the factorization A1 → B′1 →
B1 in the construction of ωB1/A1

. Thus we have to construct a map

HomA(B′, A)⊗B′ B −→ HomA1
(B′ ⊗A A1, A1)⊗B′

1
B1

Thus it suffices to construct a B′-linear map HomA(B′, A)→ HomA1
(B′⊗AA1, A1)

which we will denote ϕ 7→ ϕ1. Namely, given an A-linear map ϕ : B′ → A we let
ϕ1 be the map such that ϕ1(b′ ⊗ a1) = ϕ(b′)a1. This is clearly A1-linear and the
construction is complete.

Lemma 2.4.0BVC The base change map (2.3.1) is independent of the choice of the
factorization A→ B′ → B. Given ring maps A→ A1 → A2 the composition of the
base change maps for A→ A1 and A1 → A2 is the base change map for A→ A2.

Proof. Omitted. Hint: argue in exactly the same way as in Lemma 2.2 using
Lemma 2.1. �

Lemma 2.5.0BT3 If A → A1 is flat, then the base change map (2.3.1) induces an
isomorphism ωB/A ⊗B B1 → ωB1/A1

.

http://stacks.math.columbia.edu/tag/0BT2
http://stacks.math.columbia.edu/tag/0BVC
http://stacks.math.columbia.edu/tag/0BT3
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Proof. Assume that A→ A1 is flat. By construction of ωB/A we may assume that
A → B is finite. Then ωB/A = HomA(B,A) and ωB1/A1

= HomA1
(B1, A1). Since

B1 = B ⊗A A1 the result follows from More on Algebra, Remark 60.20. �

Lemma 2.6.0BT4 Let A → B → C be quasi-finite homomorphisms of Noetherian
rings. There is a canonical map ωB/A ⊗B ωC/B → ωC/A.

Proof. Choose A→ B′ → B with A→ B′ finite such that Spec(B)→ Spec(B′) is
an open immersion. Then B′ → C is quasi-finite too. Choose B′ → C ′ → C with
B′ → C ′ finite and Spec(C) → Spec(C ′) an open immersion. Then the source of
the arrow is

HomA(B′, A)⊗B′ B ⊗B HomB(B ⊗B′ C ′, B)⊗B⊗B′C′ C

which is equal to

HomA(B′, A)⊗B′ HomB′(C ′, B)⊗C′ C

This indeed comes with a canonical map to HomA(C ′, A) ⊗C′ C = ωC/A coming
from composition HomA(B′, A)×HomB′(C ′, B)→ HomA(C ′, A). �

Lemma 2.7.0BT5 Let A → B and A → C be quasi-finite maps of Noetherian rings.
Then ωB×C/A = ωB/A × ωC/A as modules over B × C.

Proof. Choose factorizations A → B′ → B and A → C ′ → C such that A → B′

and A→ C ′ are finite and such that Spec(B)→ Spec(B′) and Spec(C)→ Spec(C ′)
are open immersions. Then A→ B′×C ′ → B×C is a similar factorization. Using
this factorization to compute ωB×C/A gives the lemma. �

Lemma 2.8.0BVD Let A → B be a quasi-finite homomorphism of Noetherian rings.
Then AssB(ωB/A) is the set of primes of B lying over associated primes of A.

Proof. Choose a factorization A → B′ → B with A → B′ finite and B′ → B
inducing an open immersion on spectra. As ωB/A = ωB′/A ⊗B′ B it suffices to
prove the statement for ωB′/A. Thus we may assume A→ B is finite.

Assume p ∈ Ass(A) and q is a prime of B lying over p. Let x ∈ A be an element
whose annihilator is p. Choose a nonzero κ(p) linear map λ : κ(q) → κ(p). Since
A/p ⊂ B/q is a finite extension of rings, there is an f ∈ A, f 6∈ p such that fλ
maps B/q into A/p. Hence we obtain a nonzero A-linear map

B → B/q→ A/p→ A, b 7→ fλ(b)x

An easy computation shows that this element of ωB/A has annihilator q, whence
q ∈ Ass(ωB/A).

Conversely, suppose that q ⊂ B is a prime ideal lying over a prime p ⊂ A which
is not an associated prime of A. We have to show that q 6∈ AssB(ωB/A). After
replacing A by Ap and B by Bp we may assume that p is a maximal ideal of A.
This is allowed by Lemma 2.5 and Algebra, Lemma 62.16. Then there exists an
f ∈ m which is a nonzerodivisor on A. Then f is a nonzerodivisor on ωB/A and
hence q is not an associated prime of this module. �

Lemma 2.9.0BVE Let A→ B be a flat quasi-finite homomorphism of Noetherian rings.
Then ωB/A is a flat A-module.

http://stacks.math.columbia.edu/tag/0BT4
http://stacks.math.columbia.edu/tag/0BT5
http://stacks.math.columbia.edu/tag/0BVD
http://stacks.math.columbia.edu/tag/0BVE
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Proof. Let q ⊂ B be a prime lying over p ⊂ A. We will show that the localization
ωB/A,q is flat over Ap. This suffices by Algebra, Lemma 38.19. By Algebra, Lemma
141.21 we can find an étale ring map A→ A′ and a prime ideal p′ ⊂ A′ lying over
p such that κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D

with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and
p′ corresponds to a prime of C. By Lemma 2.5 and Algebra, Lemma 99.1 it suffices
to show ωB′/A′,q′ is flat over A′p′ . Since ωB′/A′ = ωC/A′ × ωD/A′ by Lemma 2.7
this reduces us to the case where B is finite flat over A. In this case B is finite
locally free as an A-module and ωB/A = HomA(B,A) is the dual finite locally free
A-module. �

Lemma 2.10.0BVF If A → B is flat, then the base change map (2.3.1) induces an
isomorphism ωB/A ⊗B B1 → ωB1/A1

.

Proof. If A→ B is finite flat, then B is finite locally free as an A-module. In this
case ωB/A = HomA(B,A) is the dual finite locally free A-module and formation of
this module commutes with arbitrary base change which proves the lemma in this
case. In the next paragraph we reduce the general (quasi-finite flat) case to the
finite flat case just discussed.

Let q1 ⊂ B1 be a prime. We will show that the localization of the map at the
prime q1 is an isomorphism, which suffices by Algebra, Lemma 23.1. Let q ⊂ B
and p ⊂ A be the prime ideals lying under q1. By Algebra, Lemma 141.21 we can
find an étale ring map A → A′ and a prime ideal p′ ⊂ A′ lying over p such that
κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D

with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and
p′ corresponds to a prime of C. Set A′1 = A′ ⊗A A1 and consider the base change
maps (2.3.1) for the ring maps A→ A′ → A′1 and A→ A1 → A′1 as in the diagram

ωB′/A′ ⊗B′ B′1 // ωB′
1/A

′
1

ωB/A ⊗B B′1 //

OO

ωB1/A1
⊗B1 B

′
1

OO

where B′ = B ⊗A A′, B1 = B ⊗A A1, and B′1 = B ⊗A (A′ ⊗A A1). By Lemma 2.4
the diagram commutes. By Lemma 2.5 the vertical arrows are isomorphisms. As
B1 → B′1 is étale and hence flat it suffices to prove the top horizontal arrow is an
isomorphism after localizing at a prime q′1 of B′1 lying over q (there is such a prime
and use Algebra, Lemma 38.17). Thus we may assume that B = C×D with A→ C
finite and q corresponding to a prime of C. In this case the dualizing module ωB/A
decomposes in a similar fashion (Lemma 2.7) which reduces the question to the
finite flat case A→ C handled above. �

Remark 2.11.0BVG Let f : Y → X be a quasi-finite morphism of Noetherian schemes.
It is clear from Lemma 2.3 that there is a unique coherent OY -module ωY/X on Y

http://stacks.math.columbia.edu/tag/0BVF
http://stacks.math.columbia.edu/tag/0BVG
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such that for every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X with
f(V ) ⊂ U there is a canonical isomorphism

H0(V, ωY/X) = ωB/A

and where these isomorphisms are compatible with restriction maps.

Lemma 2.12.0C0I Let A → B be a quasi-finite homomorphism of Noetherian rings.
Let ω•B/A ∈ D(B) be the algebraic relative dualizing complex discussed in Dual-

izing Complexes, Section 24. Then there is a (nonunique) isomorphism ωB/A =

H0(ω•B/A).

Proof. Choose a factorizationA→ B′ → B whereA→ B′ is finite and Spec(B′)→
Spec(B) is an open immersion. Then ω•B/A = ω•B′/A⊗

L
BB
′ by Dualizing Complexes,

Lemmas 24.7 and 24.9 and the definition of ω•B/A. Hence it suffices to show there is

an isomorphism when A→ B is finite. In this case we can use Dualizing Complexes,
Lemma 24.8 to see that ω•B/A = RHom(B,A) and hence H0(ω•B/A) = HomA(B,A)

as desired. �

3. Discriminant of a finite locally free morphism

0BVH Let X be a scheme and let F be a finite locally free OX -module. Then there is a
canonical trace map

Trace : HomOX (F ,F) −→ OX
See Exercises, Exercise 21.6. This map has the property that Trace(id) is the locally
constant function on OX corresponding to the rank of F .

Let π : X → Y be a morphism of schemes which is finite locally free. Then there
exists a canonical trace for π which is an OY -linear map

Traceπ : π∗OX −→ OY
sending a local section f of π∗OX to the trace of multiplication by f on π∗OX .
Over affine opens this recovers the construction in Exercises, Exercise 21.7. The
composition

OY
π]−→ π∗OX

Traceπ−−−−→ OY
equals multiplication by the degree of π (which is a locally constant function on
Y ). In analogy with Fields, Section 20 we can define the trace pairing

Qπ : π∗OX × π∗OX −→ OY
by the rule (f, g) 7→ Traceπ(fg). We can think of Qπ as a linear map π∗OX →
HomOY (π∗OX ,OY ) between locally free modules of the same rank, and hence ob-
tain a determinant

det(Qπ) : ∧top(π∗OX) −→ ∧top(π∗OX)⊗−1

or in other words a global section

det(Qπ) ∈ Γ(Y,∧top(π∗OX)⊗−2)

The discriminant of π is by definition the closed subscheme Dπ ⊂ Y cut out by
this global section. Clearly, Dπ is a locally principal closed subscheme of Y .

Lemma 3.1.0BJF Let π : X → Y be a morphism of schemes which is finite locally free.
Then π is étale if and only if its discriminant is empty.

http://stacks.math.columbia.edu/tag/0C0I
http://stacks.math.columbia.edu/tag/0BJF
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Proof. By Morphisms, Lemma 34.8 it suffices to check that the fibres of π are étale.
Since the construction of the trace pairing commutes with base change we reduce to
the following question: Let k be a field and let A be a finite dimensional k-algebra.
Show that A is étale over k if and only if the trace pairing QA/k : A × A → k,
(a, b) 7→ TraceA/k(ab) is nondegenerate.

Assume QA/k is nondegenerate. If a ∈ A is a nilpotent element, then ab is nilpotent
for all b ∈ A and we conclude that QA/k(a,−) is identically zero. Hence A is
reduced. Then we can write A = K1 × . . . ×Kn as a product where each Ki is a
field (see Algebra, Lemmas 52.2, 52.6, and 24.1). In this case the quadratic space
(A,QA/k) is the orthogonal direct sum of the spaces (Ki, QKi/k). It follows from
Fields, Lemma 20.7 that each Ki is separable over k. This means that A is étale
over k by Algebra, Lemma 141.4. The converse is proved by reading the argument
backwards. �

4. Traces for flat quasi-finite ring maps

0BSY The trace referred to in the title of this section is of a completely different nature
than the trace discussed in Duality for Schemes, Section 7. Namely, it is the trace
as discussed in Fields, Section 20 and generalized in Exercises, Exercises 21.6 and
21.7.

Let A → B be a finite flat map of Noetherian rings. Then B is finite flat as an
A-module and hence finite locally free (Algebra, Lemma 77.2). Given b ∈ B we can
consider the trace TraceB/A(b) of the A-linear map B → B given by multiplication
by b on B. By the references above this defines an A-linear map TraceB/A : B → A.
Since ωB/A = HomA(B,A) as A→ B is finite, we see that TraceB/A ∈ ωB/A.

For a general flat quasi-finite ring map we define the notion of a trace as follows.

Definition 4.1.0BT6 Let A → B be a flat quasi-finite map of Noetherian rings. The

trace element is the unique2 element τB/A ∈ ωB/A with the following property:
for any Noetherian A-algebra A1 such that B1 = B ⊗A A1 comes with a product
decomposition B1 = C × D with A1 → C finite the image of τB/A in ωC/A1

is TraceC/A1
. Here we use the base change map (2.3.1) and Lemma 2.7 to get

ωB/A → ωB1/A1
→ ωC/A1

.

We first prove that trace elements are unique and then we prove that they exist.

Lemma 4.2.0BT7 Let A → B be a flat quasi-finite map of Noetherian rings. Then
there is at most one trace element in ωB/A.

Proof. Let q ⊂ B be a prime ideal lying over the prime p ⊂ A. By Algebra,
Lemma 141.21 we can find an étale ring map A → A1 and a prime ideal p1 ⊂ A1

lying over p such that κ(p1) = κ(p) and such that

B1 = B ⊗A A1 = C ×D
with A1 → C finite and such that the unique prime q1 of B ⊗A A1 lying over q
and p1 corresponds to a prime of C. Observe that ωC/A1

= ωB/A ⊗B C (combine
Lemmas 2.5 and 2.7). Since the collection of ring maps B → C obtained in this
manner is a jointly injective family of flat maps and since the image of τB/A in
ωC/A1

is prescribed the uniqueness follows. �

2Uniqueness and existence will be justified in Lemmas 4.2 and 4.6.

http://stacks.math.columbia.edu/tag/0BT6
http://stacks.math.columbia.edu/tag/0BT7
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Here is a sanity check.

Lemma 4.3.0BT8 Let A→ B be a finite flat map of Noetherian rings. Then TraceB/A ∈
ωB/A is the trace element.

Proof. Suppose we have A→ A1 with A1 Noetherian and a product decomposition
B⊗AA1 = C×D with A1 → C finite. Of course in this case A1 → D is also finite.
Set B1 = B⊗AA1. Since the construction of traces commutes with base change we
see that TraceB/A maps to TraceB1/A1

. Thus the proof is finished by noticing that
TraceB1/A1

= (TraceC/A1
,TraceD/A1

) under the isomorphism ωB1/A1
= ωC/A1

×
ωD/A1

of Lemma 2.7. �

Lemma 4.4.0BT9 Let A → B be a flat quasi-finite map of Noetherian rings. Let
τ ∈ ωB/A be a trace element.

(1) If A → A1 is a map with A1 Noetherian, then with B1 = A1 ⊗A B the
image of τ in ωB1/A1

is a trace element.
(2) If A = Rf , then τ is a trace element in ωB/R.
(3) If g ∈ B, then the image of τ in ωBg/A is a trace element.
(4) If B = B1 ×B2, then τ maps to a trace element in both ωB1/A and ωB2/A.

Proof. Part (1) is a formal consequence of the definition.

Statement (2) makes sense because ωB/R = ωB/A by Lemma 2.3. Denote τ ′ the
element τ but viewed as an element of ωB/R. To see that (2) is true suppose that we
have R→ R1 with R1 Noetherian and a product decomposition B⊗R R1 = C ×D
with R1 → C finite. Then with A1 = (R1)f we see that B ⊗A A1 = C ×D. Since
R1 → C is finite, a fortiori A1 → C is finite. Hence we can use the defining property
of τ to get the corresponding property of τ ′.

Statement (3) makes sense because ωBg/A = (ωB/A)g by Lemma 2.3. The proof is
similar to the proof of (2). Suppose we have A → A1 with A1 Noetherian and a
product decomposition Bg⊗AA1 = C×D with A1 → C finite. Set B1 = B⊗AA1.
Then Spec(C) → Spec(B1) is an open immersion as Bg ⊗A A1 = (B1)g and the
image is closed because B1 → C is finite (as A1 → C is finite). Thus we see that
B1 = C ×D1 and D = (D1)g. Then we can use the defining property of τ to get
the corresponding property for the image of τ in ωBg/A.

Statement (4) makes sense because ωB/A = ωB1/A×ωB2/A by Lemma 2.7. Suppose
we have A→ A′ with A′ Noetherian and a product decomposition B⊗AA′ = C×D
with A′ → C finite. Then it is clear that we can refine this product decomposition
into B ⊗A A′ = C1 × C2 × D1 × D2 with A′ → Ci finite such that Bi ⊗A A′ =
Ci × Di. Then we can use the defining property of τ to get the corresponding
property for the image of τ in ωBi/A. This uses the obvious fact that TraceC/A′ =
(TraceC1/A′ ,TraceC2/A′) under the decomposition ωC/A′ = ωC1/A′ × ωC2/A′ . �

Lemma 4.5.0BTA Let A → B be a flat quasi-finite map of Noetherian rings. Let
g1, . . . , gm ∈ B be elements generating the unit ideal. Let τ ∈ ωB/A be an element
whose image in ωBgi/A is a trace element for A→ Bgi . Then τ is a trace element.

Proof. Suppose we have A→ A1 with A1 Noetherian and a product decomposition
B⊗AA1 = C×D with A1 → C finite. We have to show that the image of τ in ωC/A1

is TraceC/A1
. Observe that g1, . . . , gm generate the unit ideal in B1 = B⊗AA1 and

http://stacks.math.columbia.edu/tag/0BT8
http://stacks.math.columbia.edu/tag/0BT9
http://stacks.math.columbia.edu/tag/0BTA
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that τ maps to a trace element in ω(B1)gi/A1
by Lemma 4.4. Hence we may replace

A by A1 and B by B1 to get to the situation as described in the next paragraph.

Here we assume that B = C ×D with A → C is finite. Let τC be the image of τ
in ωC/A. We have to prove that τC = TraceC/A in ωC/A. By the compatibility of
trace elements with products (Lemma 4.4) we see that τC maps to a trace element
in ωCgi/A. Hence, after replacing B by C we may assume that A→ B is finite flat.

Assume A → B is finite flat. In this case TraceB/A is a trace element by Lemma
4.3. Hence TraceB/A maps to a trace element in ωBgi/A by Lemma 4.4. Since trace

elements are unique (Lemma 4.2) we find that TraceB/A and τ map to to the same
elements in ωBgi/A = (ωB/A)gi . As g1, . . . , gm generate the unit ideal of B the map

ωB/A →
∏
ωBgi/A is injective and we conclude that τC = TraceB/A as desired. �

Lemma 4.6.0BTB Let A → B be a flat quasi-finite map of Noetherian rings. There
exists a trace element τ ∈ ωB/A.

Proof. Choose a factorization A → B′ → B with A → B′ finite and Spec(B) →
Spec(B′) an open immersion. Let g1, . . . , gn ∈ B′ be elements such that Spec(B) =⋃
D(gi) as opens of Spec(B′). Suppose that we can prove the existence of trace

elements τi for the quasi-finite flat ring maps A→ Bgi . Then for all i, j the elements
τi and τj map to trace elements of ωBgigj /A by Lemma 4.4. By uniqueness of trace

elements (Lemma 4.2) they map to the same element. Hence the sheaf condition for
the quasi-coherent module associated to ωB/A (see Algebra, Lemma 22.2) produces
an element τ ∈ ωB/A. Then τ is a trace element by Lemma 4.5. In this way we
reduce to the case treated in the next paragraph.

Assume we have A→ B′ finite and g ∈ B′ with B = B′g flat over A. It is our task
to construct a trace element in ωB/A = HomA(B′, A) ⊗B′ B. Choose a resolution
F1 → F0 → B′ → 0 of B′ by finite free A-modules F0 and F1. Then we have an
exact sequence

0→ HomA(B′, A)→ F∨0 → F∨1

where F∨i = HomA(Fi, A) is the dual finite free module. Similarly we have the
exact sequence

0→ HomA(B′, B′)→ F∨0 ⊗A B′ → F∨1 ⊗A B′

The idea of the construction of τ is to use the diagram

B′
µ−→ HomA(B′, B′)← HomA(B′, A)⊗A B′

ev−→ A

where the first arrow sends b′ ∈ B′ to the A-linear operator given by multiplication
by b′ and the last arrow is the evaluation map. The problem is that the middle
arrow, which sends λ′ ⊗ b′ to the map b′′ 7→ λ′(b′′)b′, is not an isomorphism. If B′

is flat over A, the exact sequences above show that it is an isomorphism and the
composition from left to right is the usual trace TraceB′/A. In the general case, we
consider the diagram

HomA(B′, A)⊗A B′ //

��

HomA(B′, A)⊗A B′g

��
B′

µ
//

22
ψ

77

HomA(B′, B′) // Ker(F∨0 ⊗A B′g → F∨1 ⊗A B′g)

http://stacks.math.columbia.edu/tag/0BTB
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By flatness of A → B′g we see that the right vertical arrow is an isomorphism.

Hence we obtain the unadorned dotted arrow. Since B′g = colim 1
gnB

′, since

colimits commute with tensor products, and since B′ is a finitely presented A-
module we can find an n ≥ 0 and a B′-linear (for right B′-module structure) map
ψ : B′ → HomA(B′, A) ⊗A B′ whose composition with the left vertical arrow is
gnµ. Composing with ev we obtain an element ev ◦ψ ∈ HomA(B′, A). Then we set

τ = (ev ◦ ψ)⊗ g−n ∈ HomA(B′, A)⊗B′ B′g = ωB′
g/A

= ωB/A

We omit the easy verification that this element does not depend on the choice of n
and ψ above.

Let us prove that τ as constructed in the previous paragraph has the desired prop-
erty in a special case. Namely, say B′ = C ′×D′ and g = (f, h) where A→ C ′ flat,
D′h is flat, and f is a unit in C ′. To show: τ maps to TraceC′/A in ωC′/A. In this case
we first choose nD and ψD : D′ → HomA(D′, A)⊗AD′ as above for the pair (D′, h)
and we can let ψC : C ′ → HomA(C ′, A)⊗AC ′ = HomA(C ′, C ′) be the map second-
ing c′ ∈ C ′ to multiplication by c′. Then we take n = nD and ψ = (fnDψC , ψD)
and the desired compatibility is clear because TraceC′/A = ev ◦ ψC as remarked
above.

To prove the desired property in general, suppose given A→ A1 with A1 Noetherian
and a product decomposition B′g ⊗A A1 = C × D with A1 → C finite. Set B′1 =
B′ ⊗A A1. Then Spec(C)→ Spec(B′1) is an open immersion as B′g ⊗A A1 = (B′1)g
and the image is closed as B′1 → C is finite (since A1 → C is finite). Thus
B′1 = C × D′ and D′g = D. We conclude that B′1 = C × D′ and g over A1 are
as in the previous paragraph. Since formation of the displayed diagram above
commutes with base change, the formation of τ commutes with the base change
A → A1 (details omitted; use the resolution F1 ⊗A A1 → F0 ⊗A A1 → B′1 → 0
to see this). Thus the desired compatibility follows from the result of the previous
paragraph. �

Remark 4.7.0BVJ Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let ωY/X be as in Remark 2.11. It is clear from the uniqueness, existence,
and compatibility with localization of trace elements (Lemmas 4.2, 4.6, and 4.4)
that there exists a global section

τY/X ∈ Γ(Y, ωY/X)

such that for every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X
with f(V ) ⊂ U that element τY/X maps to τB/A under the canonical isomorphism

H0(V, ωY/X) = ωB/A.

Lemma 4.8.0C13 Let k be a field and let A be a finite k-algebra. Assume A is local
with residue field k′. The following are equivalent

(1) TraceA/k is nonzero,
(2) τA/k ∈ ωA/k is nonzero, and
(3) k′/k is separable and lengthA(A) is prime to the characteristic of k.

Proof. Conditions (1) and (2) are equivalent by Lemma 4.3. Let m ⊂ A. Since
dimk(A) <∞ it is clear that A has finite length over A. Choose a filtration

A = I0 ⊃ m = I1 ⊃ I2 ⊃ . . . In = 0

http://stacks.math.columbia.edu/tag/0BVJ
http://stacks.math.columbia.edu/tag/0C13
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by ideals such that Ii/Ii+1
∼= k′ as A-modules. See Algebra, Lemma 51.11 which

also shows that n = lengthA(A). If a ∈ m then aIi ⊂ Ii+1 and it is immediate that
TraceA/k(a) = 0. If a 6∈ m with image λ ∈ k′, then we conclude

TraceA/k(a) =
∑

i=0,...,n−1
Tracek(a : Ii/Ii−1 → Ii/Ii−1) = nTracek′/k(λ)

The proof of the lemma is finished by applying Fields, Lemma 20.7. �

5. The Noether different

0BVK There are many different differents available in the literature. We list some of them
in this and the next sections; for more information we suggest the reader consult
[Kun86].

Let A→ B be a ring map. Denote

µ : B ⊗A B −→ B, b⊗ b′ 7−→ bb′

the multiplication map. Let I = Ker(µ). It is clear that I is generated by the
elements b ⊗ 1 − 1 ⊗ b for b ∈ B. Hence the annihilator J ⊂ B ⊗A B of I is a
B-module in a canonical manner. The Noether different of B over A is the image
of J under the map µ : B ⊗A B → B. Equivalently, the Noether different is the
image of the map

J = HomB⊗AB(B,B ⊗A B) −→ B, ϕ 7−→ µ(ϕ(1))

We begin with some obligatory lemmas.

Lemma 5.1.0BVL Let A→ Bi, i = 1, 2 be ring maps. Set B = B1 ×B2.

(1) The annihilator J of Ker(B⊗AB → B) is J1×J2 where Ji is the annihilator
of Ker(Bi ⊗A Bi → Bi).

(2) The Noether different D of B over A is D1 ×D2, where Di is the Noether
different of Bi over A.

Proof. Omitted. �

Lemma 5.2.0BVM Let A → B be a finite type ring map. Let A → A′ be a flat ring
map. Set B′ = B ⊗A A′.

(1) The annihilator J ′ of Ker(B′ ⊗A′ B′ → B′) is J ⊗A A′ where J is the
annihilator of Ker(B ⊗A B → B).

(2) The Noether different D′ of B′ over A′ is DB′, where D is the Noether
different of B over A.

Proof. Choose generators b1, . . . , bn of B as an A-algebra. Then

J = Ker(B ⊗A B
bi⊗1−1⊗bi−−−−−−−→ (B ⊗A B)⊕n)

Hence we see that the formation of J commutes with flat base change. The result
on the Noether different follows immediately from this. �

Lemma 5.3.0BVN Let A → B′ → B be ring maps with A → B′ of finite type and
B′ → B inducing an open immersion of spectra.

(1) The annihilator J of Ker(B ⊗A B → B) is J ′ ⊗B′ B where J ′ is the anni-
hilator of Ker(B′ ⊗A B′ → B′).

(2) The Noether different D of B over A is D′B, where D′ is the Noether
different of B′ over A.

http://stacks.math.columbia.edu/tag/0BVL
http://stacks.math.columbia.edu/tag/0BVM
http://stacks.math.columbia.edu/tag/0BVN
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Proof. Write I = Ker(B⊗AB → B) and I ′ = Ker(B′⊗AB′ → B′). As Spec(B)→
Spec(B′) is an open immersion, it follows that B = (B ⊗A B) ⊗B′⊗AB′ B′. Thus
we see that I = I ′(B⊗AB). Since I ′ is finitely generated and B′⊗AB′ → B⊗AB
is flat, we conclude that J = J ′(B ⊗A B), see Algebra, Lemma 39.4. Since the
B′ ⊗A B′-module structure of J ′ factors through B′ ⊗A B′ → B′ we conclude that
(1) is true. Part (2) is a consequence of (1). �

Remark 5.4.0BVP Let A → B be a quasi-finite homomorphism of Noetherian rings.
Let J be the annihilator of Ker(B ⊗A B → B). There is a canonical B-bilinear
pairing

(5.4.1)0BVQ ωB/A × J −→ B

defined as follows. Choose a factorization A → B′ → B with A → B′ finite and
B′ → B inducing an open immersion of spectra. Let J ′ be the annihilator of
Ker(B′ ⊗A B′ → B′). We first define

HomA(B′, A)× J ′ −→ B′, (λ,
∑

bi ⊗ ci) 7−→
∑

λ(bi)ci

This is B′-bilinear exactly because for ξ ∈ J ′ and b ∈ B′ we have (b⊗1)ξ = (1⊗b)ξ.
By Lemma 5.3 and the fact that ωB/A = HomA(B′, A) ⊗B′ B we can extend this
to a B-bilinear pairing as displayed above.

Lemma 5.5.0BVR Let A→ B be a quasi-finite homomorphism of Noetherian rings.

(1) If A→ A′ is a flat map of Noetherian rings, then

ωB/A × J //

��

B

��
ωB′/A′ × J ′ // B′

is commutative where notation as in Lemma 5.2 and horizontal arrows are
given by (5.4.1).

(2) If B = B1 ×B2, then

ωB/A × J //

��

B

��
ωBi/A × Ji // Bi

is commutative for i = 1, 2 where notation as in Lemma 5.1 and horizontal
arrows are given by (5.4.1).

Proof. Because of the construction of the pairing in Remark 5.4 both (1) and (2)
reduce to the case where A → B is finite. Then (1) follows from the fact that the
contraction map HomA(M,A)⊗AM⊗AM →M , λ⊗m⊗m′ 7→ λ(m)m′ commuted
with base change. To see (2) use that J = J1 × J2 is contained in the summands
B1 ⊗A B1 and B2 ⊗A B2 of B ⊗A B. �

Lemma 5.6.0BVS Let A→ B be a flat quasi-finite homomorphism of Noetherian rings.
The pairing of Remark 5.4 induces an isomorphism J → HomB(ωB/A, B).

http://stacks.math.columbia.edu/tag/0BVP
http://stacks.math.columbia.edu/tag/0BVR
http://stacks.math.columbia.edu/tag/0BVS
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Proof. We first prove this when A → B is finite and flat. In this case we can
localize on A and assume B is finite free as an A-module. Let b1, . . . , bn be a
basis of B as an A-module and denote b∨1 , . . . , b

∨
n the dual basis of ωB/A. Note

that
∑
bi ⊗ ci ∈ J maps to the element of HomB(ωB/A, B) which sends b∨i to ci.

Suppose ϕ : ωB/A → B is B-linear. Then we claim that ξ =
∑
bi ⊗ ϕ(b∨i ) is an

element of J . Namely, the B-linearity of ϕ exactly implies that (b⊗ 1)ξ = (1⊗ b)ξ
for all b ∈ B. Thus our map has an inverse and it is an isomorphism.

Let q ⊂ B be a prime lying over p ⊂ A. We will show that the localization

Jq −→ HomB(ωB/A,B)q

is an isomorphism. This suffices by Algebra, Lemma 23.1. By Algebra, Lemma
141.21 we can find an étale ring map A→ A′ and a prime ideal p′ ⊂ A′ lying over
p such that κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D

with A′ → C finite and such that the unique prime q′ of B⊗AA′ lying over q and p′

corresponds to a prime of C. Let J ′ be the annihilator of Ker(B′⊗A′ B′ → B′). By
Lemmas 2.5, 5.2, and 5.5 the map J ′ → HomB′(ωB′/A′ , B′) is gotten by applying
the functor −⊗BB′ to the map J → HomB(ωB/A, B). Since Bq → B′q′ is faithfully

flat it suffices to prove the result for (A′ → B′, q′). By Lemmas 2.7, 5.1, and 5.5
this reduces us to the case proved in the first paragraph of the proof. �

Lemma 5.7.0BVT Let A→ B be a flat quasi-finite homomorphism of Noetherian rings.
The diagram

J //

µ
��

HomB(ωB/A, B)

ϕ7→ϕ(τB/A)
xx

B

commutes where the horizontal arrow is the isomorphism of Lemma 5.6. Hence the
Noether different of B over A is the image of the map HomB(ωB/A, B)→ B.

Proof. Exactly as in the proof of Lemma 5.6 this reduces to the case of a finite
free map A→ B. In this case τB/A = TraceB/A. Choose a basis b1, . . . , bn of B as
an A-module. Let ξ =

∑
bi ⊗ ci ∈ J . Then µ(ξ) =

∑
bici. On the other hand, the

image of ξ in HomB(ωB/A, B) sends TraceB/A to
∑

TraceB/A(bi)ci. Thus we have
to show ∑

bici =
∑

TraceB/A(bi)ci

when ξ =
∑
bi ⊗ ci ∈ J . Write bibj =

∑
k a

k
ijbk for some akij ∈ A. Then the right

hand side is
∑
i,j a

j
ijci. On the other hand, ξ ∈ J implies

(bj ⊗ 1)(
∑

i
bi ⊗ ci) = (1⊗ bj)(

∑
i
bi ⊗ ci)

which implies that bjci =
∑
k a

i
jkck. Thus the left hand side is

∑
i,j a

i
ijcj . Since

akij = akji the equality holds. �

Lemma 5.8.0BVU Let A → B be a finite type ring map. Let D ⊂ B be the Noether
different. Then V (D) is the set of primes q ⊂ B such that A→ B is not unramified
at q.

http://stacks.math.columbia.edu/tag/0BVT
http://stacks.math.columbia.edu/tag/0BVU
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Proof. Assume A→ B is unramified at q. After replacing B by Bg for some g ∈ B,
g 6∈ q we may assume A→ B is unramified (Algebra, Definition 147.1 and Lemma
5.3). In this case ΩB/A = 0. Hence if I = Ker(B ⊗A B → B), then I/I2 = 0 by
Algebra, Lemma 130.13. Since A → B is of finite type, we see that I is finitely
generated. Hence by Nakayama’s lemma (Algebra, Lemma 19.1) there exists an
element of the form 1 + i annihilating I. It follows that D = B.

Conversely, assume that D 6⊂ q. Then after replacing B by a principal localization
as above we may assume D = B. This means there exists an element of the form
1 + i in the annihilator of I. Conversely this implies that I/I2 = ΩB/A is zero and
we conclude. �

6. The Kähler different

0BVV Let A → B be a finite type ring map. The Kähler different is the zeroth fitting
ideal of ΩB/A as a B-module. We globalize the definition as follows.

Definition 6.1.0BVW Let f : Y → X be a morphism of schemes which is locally of
finite type. The Kähler different is the 0th fitting ideal of ΩY/X .

The Kähler different is a quasi-coherent sheaf of ideals on Y .

Lemma 6.2.0BVX Consider a cartesian diagram of schemes

Y ′

f ′

��

// Y

f

��
X ′

g // X

with f locally of finite type. Let R ⊂ Y , resp. R′ ⊂ Y ′ be the closed subscheme cut
out by the Kähler different of f , resp. f ′. Then Y ′ → Y induces an isomorphism
R′ → R×Y Y ′.

Proof. This is true because ΩY ′/X′ is the pullback of ΩY/X (Morphisms, Lemma
31.10) and then we can apply More on Algebra, Lemma 8.4. �

Lemma 6.3.0BVY Let f : Y → X be a morphism of schemes which is locally of finite
type. Let R ⊂ Y be the closed subscheme defined by the Kähler different. Then
R ⊂ Y is exactly the set of points where f is not unramified.

Proof. This is a copy of Divisors, Lemma 10.1. �

Lemma 6.4.0BVZ Let A be a ring. Let n ≥ 1 and f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn]/(f1, . . . , fn). The Kähler different of B over A is the ideal of B
generated by det(∂fi/∂xj).

Proof. This is true because ΩB/A has a presentation⊕
i=1,...,n

Bfi
d−→
⊕

j=1,...,n
Bdxj → ΩB/A → 0

by Algebra, Lemma 130.9. �

http://stacks.math.columbia.edu/tag/0BVW
http://stacks.math.columbia.edu/tag/0BVX
http://stacks.math.columbia.edu/tag/0BVY
http://stacks.math.columbia.edu/tag/0BVZ
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7. The Dedekind different

0BW0 Let A → B be a ring map. We say the Dedekind different is defined if A is Noe-
therian, A → B is finite, any nonzerodivisor on A is a nonzerodivisor on B, and
K → L is étale where K = Q(A) and L = B⊗AK. Then K ⊂ L is finite étale and

LB/A = {x ∈ L | TraceL/K(bx) ∈ A for all b ∈ B}

is the Dedekind complementary module. In this situation the Dedekind different is

DB/A = {x ∈ L | xLB/A ⊂ B}

viewed as a B-submodule of L. By Lemma 7.1 the Dedekind different is an ideal
of B either if A is normal or if B is flat over A.

Lemma 7.1.0BW1 Assume the Dedekind different of A → B is defined. Consider the
statements

(1) A→ B is flat,
(2) A is a normal ring,
(3) TraceL/K(B) ⊂ A,
(4) 1 ∈ LB/A, and
(5) the Dedekind different DB/A is an ideal of B.

Then we have (1) ⇒ (3), (2) ⇒ (3), (3) ⇔ (4), and (4) ⇒ (5).

Proof. The equivalence of (3) and (4) and the implication (4)⇒ (5) are immediate.

If A→ B is flat, then we see that TraceB/A : B → A is defined and that TraceL/K
is the base change. Hence (3) holds.

If A is normal, then A is a finite product of normal domains, hence we reduce to
the case of a normal domain. Then K is the fraction field of A and L =

∏
Li

is a finite product of finite separable field extensions of K. Then TraceL/K(b) =∑
TraceLi/K(bi) where bi ∈ Li is the image of b. Since b is integral over A as B is

finite over A, these traces are in A. This is true because the minimal polynomial of
bi over K has coefficients in A (Algebra, Lemma 37.6) and because TraceLi/K(bi)
is an integer multiple of one of these coefficients (Fields, Lemma 20.3). �

Lemma 7.2.0BW2 If the Dedekind different of A → B is defined, then there is a
canonical isomorphism LB/A → ωB/A.

Proof. Recall that ωB/A = HomA(B,A) as A → B is finite. We send x ∈ LB/A
to the map b 7→ TraceL/K(bx). Conversely, given an A-linear map ϕ : B → A we
obtain a K-linear map ϕK : L → K. Since K → L is finite étale, we see that the
trace pairing is nondegenerate (Lemma 3.1) and hence there exists a x ∈ L such
that ϕK(y) = TraceL/K(xy) for all y ∈ L. Then x ∈ LB/A maps to ϕ in ωB/A. �

Lemma 7.3.0BW3 If the Dedekind different of A → B is defined and A → B is flat,
then

(1) the canonical isomorphism LB/A → ωB/A sends 1 ∈ LB/A to the trace
element τB/A ∈ ωB/A, and

(2) the Dedekind different is DB/A = {b ∈ B | bωB/A ⊂ BτB/A}.

Proof. The first assertion follows from the proof of Lemma 7.1 and Lemma 4.3.
The second assertion is immediate from the first and the definitions. �

http://stacks.math.columbia.edu/tag/0BW1
http://stacks.math.columbia.edu/tag/0BW2
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8. The different

0BTC The motivation for the following definition is that it recovers the Dedekind different
in the finite flat case as we will see below.

Definition 8.1.0BW4 Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let ωY/X be the relative dualizing module and let τY/X ∈ Γ(Y, ωY/X) be
the trace element (Remarks 2.11 and 4.7). The annihilator of

Coker(OY
τY/X−−−→ ωY/X)

is the different of Y/X. It is a coherent ideal Df ⊂ OY .

We will generalize this in Remark 11.2 below. Observe that Df is locally generated
by one element if ωY/X is an invertible OY -module. We first state the agreement
with the Dedekind different.

Lemma 8.2.0BW5 Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X be affine open subschemes
with f(V ) ⊂ U . If the Dedekind different of A→ B is defined, then

Df |V = D̃B/A

as coherent ideal sheaves on V .

Proof. This is clear from Lemmas 7.1 and 7.3. �

Lemma 8.3.0BW6 Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X be affine open subschemes
with f(V ) ⊂ U . If ωY/X |V is invertible, i.e., if ωB/A is an invertible B-module,
then

Df |V = D̃

as coherent ideal sheaves on V where D ⊂ B is the Noether different of B over A.

Proof. Consider the map

HomOY (ωY/X ,OY ) −→ OY , ϕ 7−→ ϕ(τY/X)

The image of this map corresponds to the Noether different on affine opens, see
Lemma 5.7. Hence the result follows from the elementary fact that given an invert-
ible module ω and a global section τ the image of τ : Hom(ω,O) = ω⊗−1 → O is
the same as the annihilator of Coker(τ : O → ω). �

Lemma 8.4.0BW7 Consider a cartesian diagram of Noetherian schemes

Y ′

f ′

��

// Y

f

��
X ′

g // X

with f flat and quasi-finite. Let R ⊂ Y , resp. R′ ⊂ Y ′ be the closed subscheme
cut out by the different Df , resp. Df ′ . Then Y ′ → Y induces a bijective closed
immersion R′ → R×Y Y ′. If g is flat or if ωY/X is invertible, then R′ = R×Y Y ′.

http://stacks.math.columbia.edu/tag/0BW4
http://stacks.math.columbia.edu/tag/0BW5
http://stacks.math.columbia.edu/tag/0BW6
http://stacks.math.columbia.edu/tag/0BW7
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Proof. There is an immediate reduction to the case where X, X ′, Y , Y ′ are affine.
In other words, we have a cocartesian diagram of Noetherian rings

B′ Boo

A′

OO

Aoo

OO

with A→ B flat and quasi-finite. The base change map ωB/A⊗BB′ → ωB′/A′ is an
isomorphism (Lemma 2.10) and maps the trace element τB/A to the trace element
τB′/A′ (Lemma 4.4). Hence the finite B-module Q = Coker(τB/A : B → ωB/A)
satisfies Q ⊗B B′ = Coker(τB′/A′ : B′ → ωB′/A′). Thus DB/AB

′ ⊂ DB′/A′ which
means we obtain the closed immersion R′ → R ×Y Y ′. Since R = Supp(Q) and
R′ = Supp(Q⊗B B′) (Algebra, Lemma 39.5) we see that R′ → R×Y Y ′ is bijective
by Algebra, Lemma 39.6. The equality DB/AB

′ = DB′/A′ holds if B → B′ is flat,
e.g., if A→ A′ is flat, see Algebra, Lemma 39.4. Finally, if ωB/A is invertible, then
we can localize and assume ωB/A = Bλ. Writing τB/A = bλ we see that Q = B/bB
and DB/A = bB. The same reasoning over B′ gives DB′/A′ = bB′ and the lemma
is proved. �

Lemma 8.5.0BW8 Let f : Y → X be a finite flat morphism of Noetherian schemes.
Then Normf : f∗OY → OX maps f∗Df into the ideal sheaf of the discriminant Df .

Proof. The norm map is constructed in Divisors, Lemma 17.6 and the discriminant
of f in Section 3. The question is affine local, hence we may assume X = Spec(A),
Y = Spec(B) and f given by a finite locally free ring mapA→ B. Localizing further
we may assume B is finite free as an A-module. Choose a basis b1, . . . , bn ∈ B for
B as an A-module. Denote b∨1 , . . . , b

∨
n the dual basis of ωB/A = HomA(B,A) as an

A-module. Since the norm of b is the determinant of b : B → B as an A-linear map,
we see that NormB/A(b) = det(b∨i (bbj)). The discriminant is the principal closed
subscheme of Spec(A) defined by det(TraceB/A(bibj)). If b ∈ DB/A then there exist
ci ∈ B such that b · b∨i = ci ·TraceB/A where we use a dot to indicate the B-module
structure on ωB/A. Write ci =

∑
ailbl. We have

NormB/A(b) = det(b∨i (bbj))

= det((b · b∨i )(bj))

= det((ci · TraceB/A)(bj))

= det(TraceB/A(cibj))

= det(ail) det(TraceB/A(blbj))

which proves the lemma. �

Lemma 8.6.0BW9 Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. The closed subscheme R ⊂ Y defined by the different Df is exactly the
set of points where f is not étale (equivalently not unramified).

Proof. Since f is of finite presentation and flat, we see that it is étale at a point
if and only if it is unramified at that point. Moreover, the formation of the locus
of ramified points commutes with base change. See Morphisms, Section 34 and
especially Morphisms, Lemma 34.17. By Lemma 8.4 the formation of R commutes
set theoretically with base change. Hence it suffices to prove the lemma when X
is the spectrum of a field. On the other hand, the construction of (ωY/X , τY/X) is
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local on Y . Since Y is a finite discrete space (being quasi-finite over a field), we
may assume Y has a unique point.

Say X = Spec(k) and Y = Spec(B) where k is a field and B is a finite local k-
algebra. If Y → X is étale, then B is a finite separable extension of k, and the
trace element TraceB/k is a basis element of ωB/k by Fields, Lemma 20.7. Thus
DB/k = B in this case. Conversely, if DB/k = B, then we see from Lemma 8.5 and
the fact that the norm of 1 equals 1 that the discriminant is empty. Hence Y → X
is étale by Lemma 3.1. �

Lemma 8.7.0BWA Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let R ⊂ Y be the closed subscheme defined by Df .

(1) If ωY/X is invertible, then R is a locally principal closed subscheme of Y .
(2) If ωY/X is invertible and f is finite, then the norm of R is the discriminant

Df of f .
(3) If ωY/X is invertible and f is étale at the associated points of Y , then R is

an effective Cartier divisor and there is an isomorphism OY (R) = ωY/X .

Proof. Proof of (1). We may work locally on Y , hence we may assume ωY/X is
free of rank 1. Say ωY/X = OY λ. Then we can write τY/X = hλ and then we see
that R is defined by h, i.e., R is locally principal.

Proof of (2). We may assume Y → X is given by a finite free ring map A → B
and that ωB/A is free of rank 1 as B-module. Choose a B-basis element λ for
ωB/A and write TraceB/A = b · λ for some b ∈ B. Then DB/A = (b) and Df is
cut out by det(TraceB/A(bibj)) where b1, . . . , bn is a basis of B as an A-module.
Let b∨1 , . . . , b

∨
n be the dual basis. Writing b∨i = ci · λ we see that c1, . . . , cn is a

basis of B as well. Hence with ci =
∑
ailbl we see that det(ail) is a unit in A.

Clearly, b · b∨i = ci ·TraceB/A hence we conclude from the computation in the proof
of Lemma 8.5 that NormB/A(b) is a unit times det(TraceB/A(bibj)).

Proof of (3). In the notation above we see from Lemma 8.6 and the assumption
that h does not vanish in the associated points of Y , which implies that h is a
nonzerodivisor. The canonical isomorphism sends 1 to τY/X , see Divisors, Lemma
14.10. �

9. Quasi-finite syntomic morphisms

0DWJ This section discusses the fact that a quasi-finite syntomic morphism has an invert-
ible relative dualizing module.

Lemma 9.1.0BWE Let f : Y → X be a morphism of schemes. The following are
equivalent

(1) f is locally quasi-finite and syntomic,
(2) f is locally quasi-finite, flat, and a local complete intersection morphism,
(3) f is locally quasi-finite, flat, locally of finite presentation, and the fibres of

f are local complete intersections.
(4) f is locally quasi-finite and for every y ∈ Y there are affine opens y ∈

V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X with f(V ) ⊂ U an integer n and
h, f1, . . . , fn ∈ A[x1, . . . , xn] such that B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn),

(5) for every y ∈ Y there are affine opens y ∈ V = Spec(B) ⊂ Y , U =
Spec(A) ⊂ X with f(V ) ⊂ U such that A→ B is a relative global complete
intersection of the form B = A[x1, . . . , xn]/(f1, . . . , fn).
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Proof. The equivalence of (1) and (2) is More on Morphisms, Lemma 51.8. The
equivalence of (1) and (3) is Morphisms, Lemma 29.11.

If A → B is as in (4), then B = A[x, x1, . . . , xn]/(xh − 1, f1, . . . , fn] is a relative
global complete intersection by see Algebra, Definition 134.5. Thus (4) implies (5).
It is clear that (5) implies (4).

Condition (5) implies (1): by Algebra, Lemma 134.14 a relative global complete
intersection is syntomic and the definition of a relative global complete intersec-
tion guarantees that a relative global complete intersection on n variables with n
equations is quasi-finite, see Algebra, Definition 134.5 and Lemma 121.2.

Finally, either Algebra, Lemma 134.15 or Morphisms, Lemma 29.10 shows that (1)
implies (5). �

Lemma 9.2.0DWK Invertibility of the relative dualizing module.

(1) If A → B is a quasi-finite flat homomorphism of Noetherian rings, then
ωB/A is an invertible B-module if and only if ωB⊗Aκ(p)/κ(p) is an invertible
B ⊗A κ(p)-module for all primes p ⊂ A.

(2) If Y → X is a quasi-finite flat morphism of Noetherian schemes, then ωY/X
is invertible if and only if ωYx/x is invertible for all x ∈ X.

Proof. Proof of (1). As A→ B is flat, the module ωB/A is A-flat, see Lemma 2.9.
Thus ωB/A is an invertible B-module if and only if ωB/A ⊗A κ(p) is an invertible
B ⊗A κ(p)-module for every prime p ⊂ A, see More on Morphisms, Lemma 16.7.
Still using that A→ B is flat, we have that formation of ωB/A commutes with base
change, see Lemma 2.10. Thus we see that invertibility of the relative dualizing
module, in the presence of flatness, is equivalent to invertibility of the relative
dualizing module for the maps κ(p)→ B ⊗A κ(p).

Part (2) follows from (1) and the fact that affine locally the dualizing modules are
given by their algebraic counterparts, see Remark 2.11. �

Lemma 9.3.0DWL Let k be a field. Let B = k[x1, . . . , xn]/(f1, . . . , fn) be a global
complete intersection over k of dimension 0. Then ωB/k is invertible.

Proof. By Noether normalization, see Algebra, Lemma 114.4 we see that there
exists a finite injection k → B, i.e., dimk(B) < ∞. Hence ωB/k = Homk(B, k) as
a B-module. By Dualizing Complexes, Lemma 15.8 we see that RHom(B, k) is
a dualizing complex for B and by Dualizing Complexes, Lemma 13.3 we see that
RHom(B, k) is equal to ωB/k placed in degree 0. Thus it suffices to show that
B is Gorenstein (Dualizing Complexes, Lemma 21.4). This is true by Dualizing
Complexes, Lemma 21.7. �

Lemma 9.4.0BWF Let f : Y → X be a morphism of Noetherian schemes. If f satisfies
the equivalent conditions of Lemma 9.1 then ωY/X is an invertible OY -module.

Proof. We may assume A → B is a relative global complete intersection of the
form B = A[x1, . . . , xn]/(f1, . . . , fn) and we have to show ωB/A is invertible. This
follows in combining Lemmas 9.2 and 9.3. �
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10. A formula for the different

0BWB In this section we discuss the material in [MR70, Appendix A] due to Tate. In our
language, this will show that the different is equal to the Kähler different in the
case of a flat, quasi-finite, local complete intersection morphism. First we compute
the Noether different in a special case.

Lemma 10.1.0BWC [MR70, Appendix]Let A→ P be a ring map. Let f1, . . . , fn ∈ P be a Koszul regular
sequence. Assume B = P/(f1, . . . , fn) is flat over A. Let g1, . . . , gn ∈ P ⊗A B be a
Koszul regular sequence generating the kernel of the multiplication map P ⊗A B →
B. Write fi⊗1 =

∑
gijgj. Then the annihilator of Ker(B⊗AB → B) is a principal

ideal generated by the image of det(gij).

Proof. The Koszul complex K• = K(P, f1, . . . , fn) is a resolution of B by finite
free P -modules. The Koszul complex M• = K(P ⊗A B, g1, . . . , gn) is a resolution
of B by finite free P ⊗A B-modules. There is a map of complexes

K• −→M•

which in degree 1 is given by the matrix (gij) and in degree n by det(gij). See
More on Algebra, Lemma 26.3. As B is a flat A-module, we can view M• as a
complex of flat P -modules (via P → P ⊗A B, p 7→ p⊗ 1). Thus we may use both

complexes to compute TorP∗ (B,B) and it follows that the displayed map defines a
quasi-isomorphism after tensoring with B. It is clear that Hn(K• ⊗P B) = B. On
the other hand, Hn(M• ⊗P B) is the kernel of

B ⊗A B
g1,...,gn−−−−−→ (B ⊗A B)⊕n

Since g1, . . . , gn generate the kernel of B ⊗A B → B this proves the lemma. �

Lemma 10.2.0BWD Let A be a ring. Let n ≥ 1 and h, f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn). Assume that B is quasi-finite over A. Then

(1) B is flat over A and A→ B is a relative local complete intersection,
(2) the annihilator J of I = Ker(B ⊗A B → B) is free of rank 1 over B,
(3) the Noether different of B over A is generated by det(∂fi/∂xj) in B.

Proof. Note that B = A[x, x1, . . . , xn]/(xh−1, f1, . . . , fn) is a relative global com-
plete intersection over A, see Algebra, Definition 134.5. By Algebra, Lemma 134.14
we see that B is flat over A.

Write P ′ = A[x, x1, . . . , xn] and P = P ′/(xh − 1) = A[x1, . . . , xn, 1/g]. Then we
have P ′ → P → B. By More on Algebra, Lemma 30.4 we see that xh−1, f1, . . . , fn
is a Koszul regular sequence in P ′. Since xh − 1 is a Koszul regular sequence of
length one in P ′ (by the same lemma for example) we conclude that f1, . . . , fn is a
Koszul regular sequence in P by More on Algebra, Lemma 27.14.

Let gi ∈ P⊗AB be the image of xi⊗1−1⊗xi. Let us use the short hand yi = xi⊗1
and zi = 1⊗ xi in A[x1, . . . , xn]⊗A A[x1, . . . , xn] so that gi is the image of yi − zi.
For a polynomial f ∈ A[x1, . . . , xn] we write f(y) = f ⊗ 1 and f(z) = 1⊗ f in the
above tensor product. Then we have

P ⊗A B/(g1, . . . , gn) =
A[y1, . . . , yn, z1, . . . , zn,

1
h(y)h(z) ]

(f1(z), . . . , fn(z), y1 − z1, . . . , yn − zn)

which is clearly isomorphic to B. Hence by the same arguments as above we
find that f1(z), . . . , fn(z), y1 − z1, . . . , yn − zn is a Koszul regular sequence in
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A[y1, . . . , yn, z1, . . . , zn,
1

h(y)h(z) ]. The sequence f1(z), . . . , fn(z) is a Koszul regu-

lar in A[y1, . . . , yn, z1, . . . , zn,
1

h(y)h(z) ] by flatness of the map

P −→ A[y1, . . . , yn, z1, . . . , zn,
1

h(y)h(z) ], xi 7−→ zi

and More on Algebra, Lemma 27.5. By More on Algebra, Lemma 27.14 we conclude
that g1, . . . , gn is a regular sequence in P ⊗A B.

At this point we have verified all the assumptions of Lemma 10.1 above with P ,
f1, . . . , fn, and gi ∈ P ⊗A B as above. In particular the annihilator J of I is
freely generated by one element δ over B. Set fij = ∂fi/∂xj ∈ A[x1, . . . , xn]. An
elementary computation shows that we can write

fi(y) = fi(z1 + g1, . . . , zn + gn) = fi(z) +
∑

j
fij(z)gj +

∑
j,j′

Fijj′gjgj′

for some Fijj′ ∈ A[y1, . . . , yn, z1, . . . , zn]. Taking the image in P ⊗A B the terms
fi(z) map to zero and we obtain

fi ⊗ 1 =
∑

j

(
1⊗ fij +

∑
j′
Fijj′gj′

)
gj

Thus we conclude from Lemma 10.1 that δ = det(gij) with gij = 1 ⊗ fij +∑
j′ Fijj′gj′ . Since gj′ maps to zero in B, we conclude that that the image of

det(∂fi/∂xj) in B generates the Noether different of B over A. �

Lemma 10.3.0BWG Let f : Y → X be a morphism of Noetherian schemes. If f
satisfies the equivalent conditions of Lemma 9.1 then the different Df of f is the
Kähler different of f .

Proof. By Lemmas 8.3 and 9.4 the different of f affine locally is the same as the
Noether different. Then the lemma follows from the computation of the Noether
different and the Kähler different on standard affine pieces done in Lemmas 6.4 and
10.2. �

Lemma 10.4.0BWH Let A be a ring. Let n ≥ 1 and h, f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn). Assume that B is quasi-finite over A. Then
there is an isomorphism B → ωB/A mapping det(∂fi/∂xj) to τB/A.

Proof. Let J be the annihilator of Ker(B ⊗A B → B). By Lemma 10.2 the map
A→ B is flat and J is a free B-module with generator ξ mapping to det(∂fi/∂xj)
in B. Thus the lemma follows from Lemma 5.7 and the fact (Lemma 9.4) that ωB/A
is an invertible B-module. (Warning: it is necessary to prove ωB/A is invertible
because a finite B-module M such that HomB(M,B) ∼= B need not be free.) �

Example 10.5.0BWI Let A be a Noetherian ring. Let f, h ∈ A[x] such that

B = (A[x]/(f))h = A[x, 1/h]/(f)

is quasi-finite over A. Let f ′ ∈ A[x] be the derivative of f with respect to x. The
ideal D = (f ′) ⊂ B is the Noether different of B over A, is the Kähler different
of B over A, and is the ideal whose associated quasi-coherent sheaf of ideals is the
different of Spec(B) over Spec(A).

Lemma 10.6.0BWJ Let S be a Noetherian scheme. Let X, Y be smooth schemes of
relative dimension n over S. Let f : Y → X be a quasi-finite morphism over S.
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Then f is flat and the closed subscheme R ⊂ Y cut out by the different of f is the
locally principal closed subscheme cut out by

∧n(df) ∈ Γ(Y, (f∗ΩnX/S)⊗−1 ⊗OY ΩnY/S)

If f is étale at the associated points of Y , then R is an effective Cartier divisor and

f∗ΩnX/S ⊗OY O(R) = ΩnY/S

as invertible sheaves on Y .

Proof. To prove that f is flat, it suffices to prove Ys → Xs is flat for all s ∈ S
(More on Morphisms, Lemma 16.3). Flatness of Ys → Xs follows from Algebra,
Lemma 127.1. By More on Morphisms, Lemma 51.10 the morphism f is a local
complete intersection morphism. Thus the statement on the different follows from
the corresponding statement on the Kähler different by Lemma 10.3. Finally, since
we have the exact sequence

f∗ΩX/S
df−→ ΩX/S → ΩY/X → 0

by Morphisms, Lemma 31.9 and since ΩX/S and ΩY/S are finite locally free of rank
n (Morphisms, Lemma 32.12), the statement for the Kähler different is clear from
the definition of the zeroth fitting ideal. If f is étale at the associated points of Y ,
then ∧ndf does not vanish in the associated points of Y , which implies that the
local equation of R is a nonzerodivisor. Hence R is an effective Cartier divisor. The
canonical isomorphism sends 1 to ∧ndf , see Divisors, Lemma 14.10. �

11. A generalization of the different

0BWK In this section we generalize Definition 8.1 to take into account all cases of ring maps
A→ B where the Dedekind different is defined and 1 ∈ LB/A. First we explain the
condition “A→ B maps nonzerodivisors to nonzerodivisors and induces a flat map
Q(A)→ Q(A)⊗A B”.

Lemma 11.1.0BWL Let A→ B be a map of Noetherian rings. Consider the conditions

(1) nonzerodivisors of A map to nonzerodivisors of B,
(2) (1) holds and Q(A)→ Q(A)⊗A B is flat,
(3) A→ Bq is flat for every q ∈ Ass(B),
(4) (3) holds and A→ Bq is flat for every q lying over an element in Ass(A).

Then we have the following implications

(1) (2)ks

��
(3)

KS

(4)ks

If going up holds for A→ B then (2) and (4) are equivalent.

Proof. The horizontal implications in the diagram are trivial. Let S ⊂ A be the
set of nonzerodivisors so that Q(A) = S−1A and Q(A)⊗A B = S−1B. Recall that
S = A \

⋃
p∈Ass(A) p by Algebra, Lemma 62.9. Let q ⊂ B be a prime lying over

p ⊂ A.

Assume (2). If q ∈ Ass(B) then q consists of zerodivisors, hence (1) implies the
same is true for p. Hence p corresponds to a prime of S−1A. Hence A → Bq is
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flat by our assumption (2). If q lies over an associated prime p of A, then certainly
p ∈ Spec(S−1A) and the same argument works.

Assume (3). Let f ∈ A be a nonzerodivisor. If f were a zerodivisor on B, then f is
contained in an associated prime q of B. Since A → Bq is flat by assumption, we
conclude that p is an associated prime of A by Algebra, Lemma 64.3. This would
imply that f is a zerodivisor on A, a contradiction.

Assume (4) and going up for A→ B. We already know (1) holds. If q corresponds
to a prime of S−1B then p is contained in an associated prime p′ of A. By going
up there exists a prime q′ containing q and lying over p. Then A → Bq′ is flat
by (4). Hence A → Bq is flat as a localization. Thus A → S−1B is flat and so is
S−1A→ S−1B, see Algebra, Lemma 38.19. �

Remark 11.2.0BWM We can generalize Definition 8.1. Suppose that f : Y → X is a
quasi-finite morphism of Noetherian schemes with the following properties

(1) the open V ⊂ Y where f is flat contains Ass(OY ) and f−1(Ass(OX)),
(2) the trace element τV/X comes from a section τ ∈ Γ(Y, ωY/X).

Condition (1) implies that V contains the associated points of ωY/X by Lemma 2.8.
In particular, τ is unique if it exists (Divisors, Lemma 2.8). Given τ we can define
the different Df as the annihilator of Coker(τ : OY → ωY/X). This agrees with
the Dedekind different in many cases (Lemma 11.3). However, for non-flat maps
between non-normal rings, this generalization no longer measures ramification of
the morphism, see Example 11.4.

Lemma 11.3.0BWN Assume the Dedekind different is defined for A → B. Set X =
Spec(A) and Y = Spec(B). The generalization of Remark 11.2 applies to the
morphism f : Y → X if and only if 1 ∈ LB/A (e.g., if A is normal, see Lemma
7.1). In this case DB/A is an ideal of B and we have

Df = D̃B/A

as coherent ideal sheaves on Y .

Proof. As the Dedekind different for A→ B is defined we can apply Lemma 11.1
to see that Y → X satisfies condition (1) of Remark 11.2. Recall that there is
a canonical isomorphism c : LB/A → ωB/A, see Lemma 7.2. Let K = Q(A) and
L = K⊗AB as above. By construction the map c fits into a commutative diagram

LB/A //

c

��

L

��
ωB/A // HomK(L,K)

where the right vertical arrow sends x ∈ L to the map y 7→ TraceL/K(xy) and the
lower horizontal arrow is the base change map (2.3.1) for ωB/A. We can factor the
lower horizontal map as

ωB/A = Γ(Y, ωY/X)→ Γ(V, ωV/X)→ HomK(L,K)

Since all associated points of ωV/X map to associated primes of A (Lemma 2.8)
we see that the second map is injective. The element τV/X maps to TraceL/K in
HomK(L,K) by the very definition of trace elements (Definition 4.1). Thus τ as
in condition (2) of Remark 11.2 exists if and only if 1 ∈ LB/A and then τ = c(1).
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In this case, by Lemma 7.1 we see that DB/A ⊂ B. Finally, the agreement of Df

with DB/A is immediate from the definitions and the fact τ = c(1) seen above. �

Example 11.4.0BWP Let k be a field. Let A = k[x, y]/(xy) and B = k[u, v]/(uv)
and let A → B be given by x 7→ un and y 7→ vm for some n,m ∈ N prime to
the characteristic of k. Then Ax+y → Bx+y is (finite) étale hence we are in the
situation where the Dedekind different is defined. A computation shows that

TraceL/K(1) = (nx+my)/(x+ y), TraceL/K(ui) = 0, TraceL/K(vj) = 0

for 1 ≤ i < n and 1 ≤ j < m. We conclude that 1 ∈ LB/A if and only if n = m.
Moreover, a computation shows that if n = m, then LB/A = B and the Dedekind
different is B as well. In other words, we find that the different of Remark 11.2 is
defined for Spec(B)→ Spec(A) if and only if n = m, and in this case the different
is the unit ideal. Thus we see that in nonflat cases the nonvanishing of the different
does not guarantee the morphism is étale or unramified.

12. Comparison with duality theory

0DWM In this section we compare the elementary algebraic constructions above with the
constructions in the chapter on duality theory for schemes.

Lemma 12.1.0BUL Let f : Y → X be a quasi-finite separated morphism of Noetherian
schemes. For every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X with
f(V ) ⊂ U there is an isomorphism

H0(V, f !OY ) = ωB/A

where f ! is as in Duality for Schemes, Section 17. These isomorphisms are compat-
ible with restriction maps and define a canonical isomorphism H0(f !OX) = ωY/X
with ωY/X as in Remark 2.11. Similarly, if f : Y → X lives over a Noetherian base

S endowed with a dualizing complex ω•S, then H0(f !newOX) = ωY/X .

Proof. By Zariski’s main theorem we can choose a factorization f = f ′ ◦ j where
j : Y → Y ′ is an open immersion and f ′ : Y ′ → X is a finite morphism, see More on
Morphisms, Lemma 38.3. Thus f is compactifyable and f ! is defined, see Duality for
Schemes, Section 17. In fact, by our construction in Duality for Schemes, Lemma
17.1 we have f ! = j∗ ◦a′ where a′ : DQCoh(OX)→ DQCoh(OY ′) is the right adjoint
to Rf ′∗ of Duality for Schemes, Lemma 3.1. By Duality for Schemes, Lemma 11.4 we
see that Φ(a′(OX)) = RHom(f ′∗OY ′ ,OX) in D+

QCoh(f ′∗OY ′). In particular a′(OX)
has vanishing cohomology sheaves in degrees < 0. The zeroth cohomology sheaf is
determined by the isomorphism

f ′∗H
0(a′(OX)) = HomOX (f ′∗OY ′ ,OX)

as f ′∗OY ′ -modules via the equivalence of Morphisms, Lemma 11.6. Writing (f ′)−1U =
V ′ = Spec(B′), we obtain

H0(V ′, a′(OX)) = HomA(B′, A).

As the zeroth cohomology sheaf of a′(OX) is a quasi-coherent module we find that
the restriction to V is given by ωB/A = HomA(B′, A)⊗B′ B as desired.

The statement about restriction maps signifies that the restriction mappings of
the quasi-coherent OY ′ -module H0(a′(OX)) for opens in Y ′ agrees with the maps
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defined in Lemma 2.3 for the modules ωB/A via the isomorphisms given above. This
is clear.

The result for f !new follows from this result as we’ve seen that f !new is equal to the
right adjoint to f∗ by Duality for Schemes, Lemma 21.9. �

Lemma 12.2.0BVI Let f : Y → X be a finite flat morphism of Noetherian schemes.
The map

Tracef : f∗OY −→ OX
of Section 3 corresponds to a map OY → f !OX . Denote τY/X ∈ H0(Y, f !OX) the

image of 1. Via the isomorphism H0(f !OX) = ωX/Y of Lemma 12.1 this agrees
with the construction in Remark 4.7.

Proof. Unwinding all the definitions, this is immediate from the fact that if A→ B
is finite flat, then τB/A = TraceB/A (Lemma 4.3) and the compatibility of traces
with localizations (Lemma 4.4). �

13. Quasi-finite Gorenstein morphisms

0C14 This section discusses quasi-finite Gorenstein morphisms.

Lemma 13.1.0C16 Let f : Y → X be a quasi-finite morphism of Noetherian schemes.
The following are equivalent

(1) f is Gorenstein,
(2) f is flat and the fibres of f are Gorenstein,
(3) f is flat and ωY/X is invertible (Remark 2.11),
(4) for every y ∈ Y there are affine opens y ∈ V = Spec(B) ⊂ Y , U =

Spec(A) ⊂ X with f(V ) ⊂ U such that A → B is flat and ωB/A is an
invertible B-module.

Proof. Parts (1) and (2) are equivalent by definition. Parts (3) and (4) are equiv-
alent by the construction of ωY/X in Remark 2.11. Thus we have to show that
(1)-(2) is equivalent to (3)-(4).

First proof. Working affine locally we can assume f is a separated morphism and
apply Lemma 12.1 to see that ωY/X is the zeroth cohomology sheaf of f !OX . Under

both assumptions f is flat and quasi-finite, hence f !OX is isomorphic to ωY/X [0],
see Duality for Schemes, Lemma 22.5. Hence the equivalence follows from Duality
for Schemes, Lemma 26.10.

Second proof. By Lemma 9.2, we see that it suffices to prove the equivalence of
(2) and (3) when X is the spectrum of a field k Then Y = Spec(B) where B is
a finite k-algebra. In this case ωB/A = ωB/k = Homk(B, k) placed in degree 0
is a dualizing complex for B, see Dualizing Complexes, Lemma 15.8. Thus the
equivalence follows from Dualizing Complexes, Lemma 21.4. �

Remark 13.2.0C17 Let f : Y → X be a quasi-finite Gorenstein morphism of Noether-
ian schemes. Let Df ⊂ OY be the different and let R ⊂ Y be the closed subscheme
cut out by Df . Then we have

(1) Df is a locally principal ideal,
(2) R is a locally principal closed subscheme,
(3) Df is affine locally the same as the Noether different,
(4) formation of R commutes with base change,
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(5) if f is finite, then the norm of R is the discriminant of f , and
(6) if f is étale in the associated points of Y , then R is an effective Cartier

divisor and ωY/X = OY (R).

This follows from Lemmas 8.3, 8.4, and 8.7.

Remark 13.3.0C18 Let S be a Noetherian scheme endowed with a dualizing complex
ω•S . Let f : Y → X be a quasi-finite Gorenstein morphism of compactifyable
schemes over S. Assume moreover Y and X Cohen-Macaulay and f étale at the
generic points of Y . Then we can combine Duality for Schemes, Remark 24.4 and
Remark 13.2 to see that we have a canonical isomorphism

ωY = f∗ωX ⊗OY ωY/X = f∗ωX ⊗OY OY (R)

of OY -modules. If further f is finite, then the isomorphism OY (R) = ωY/X comes

from the global section τY/X ∈ H0(Y, ωY/X) which corresponds via duality to the
map Tracef : f∗OY → OX , see Lemma 12.2.
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