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1. Algebra

0276 This first section just contains some assorted questions.

Exercise 1.1.02CG Let A be a ring, and m a maximal ideal. In A[X] let m̃1 = (m, X)
and m̃2 = (m, X − 1). Show that

A[X]m̃1
∼= A[X]m̃2

.

Exercise 1.2.02CH Find an example of a non Noetherian ring R such that every
finitely generated ideal of R is finitely presented as an R-module. (A ring is said
to be coherent if the last property holds.)

Exercise 1.3.02CI Suppose that (A,m, k) is a Noetherian local ring. For any finite
A-module M define r(M) to be the minimum number of generators of M as an
A-module. This number equals dimkM/mM = dimkM ⊗A k by NAK.

(1) Show that r(M ⊗A N) = r(M)r(N).
(2) Let I ⊂ A be an ideal with r(I) > 1. Show that r(I2) < r(I)2.
(3) Conclude that if every ideal in A is a flat module, then A is a PID (or a

field).

Exercise 1.4.02CJ Let k be a field. Show that the following pairs of k-algebras are
not isomorphic:

(1) k[x1, . . . , xn] and k[x1, . . . , xn+1] for any n ≥ 1.
(2) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 5.
(3) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 6.

Remark 1.5.02CK Of course the idea of this exercise is to find a simple argument in
each case rather than applying a “big” theorem. Nonetheless it is good to be guided
by general principles.

http://stacks.math.columbia.edu/tag/02CG
http://stacks.math.columbia.edu/tag/02CH
http://stacks.math.columbia.edu/tag/02CI
http://stacks.math.columbia.edu/tag/02CJ
http://stacks.math.columbia.edu/tag/02CK
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Exercise 1.6.02CL Algebra. (Silly and should be easy.)

(1) Give an example of a ring A and a nonsplit short exact sequence of A-
modules

0→M1 →M2 →M3 → 0.

(2) Give an example of a nonsplit sequence of A-modules as above and a faith-
fully flat A→ B such that

0→M1 ⊗A B →M2 ⊗A B →M3 ⊗A B → 0.

is split as a sequence of B-modules.

Exercise 1.7.02CM Suppose that k is a field having a primitive nth root of unity ζ.
This means that ζn = 1, but ζm 6= 1 for 0 < m < n.

(1) Show that the characteristic of k is prime to n.
(2) Suppose that a ∈ k is an element of k which is not an dth power in k for

any divisor d of n for n ≥ d > 1. Show that k[x]/(xn − a) is a field. (Hint:
Consider a splitting field for xn − a and use Galois theory.)

Exercise 1.8.02CN Let ν : k[x] \ {0} → Z be a map with the following properties:
ν(fg) = ν(f) + ν(g) whenever f , g not zero, and ν(f + g) ≥ min(ν(f), ν(g))
whenever f , g, f + g are not zero, and ν(c) = 0 for all c ∈ k∗.

(1) Show that if f , g, and f + g are nonzero and ν(f) 6= ν(g) then we have
equality ν(f + g) = min(ν(f), ν(g)).

(2) Show that if f =
∑
aix

i, f 6= 0, then ν(f) ≥ min({iν(x)}ai 6=0). When
does equality hold?

(3) Show that if ν attains a negative value then ν(f) = −ndeg(f) for some
n ∈ N.

(4) Suppose ν(x) ≥ 0. Show that {f | f = 0, or ν(f) > 0} is a prime ideal of
k[x].

(5) Describe all possible ν.

Let A be a ring. An idempotent is an element e ∈ A such that e2 = e. The elements
1 and 0 are always idempotent. A nontrivial idempotent is an idempotent which is
not equal to zero. Two idempotents e, e′ ∈ A are called orthogonal if ee′ = 0.

Exercise 1.9.078G Let A be a ring. Show that A is a product of two nonzero rings if
and only if A has a nontrivial idempotent.

Exercise 1.10.078H Let A be a ring and let I ⊂ A be a locally nilpotent ideal. Show
that the map A→ A/I induces a bijection on idempotents. (Hint: It may be easier
to prove this when I is nilpotent. Do this first. Then use “absolute Noetherian
reduction” to reduce to the nilpotent case.)

2. Colimits

0277

Definition 2.1.078I A directed set is a nonempty set I endowed with a preorder ≤
such that given any pair i, j ∈ I there exists a k ∈ I such that i ≤ k and j ≤ k.
A system of rings over I is given by a ring Ai for each i ∈ I and a map of rings
ϕij : Ai → Aj whenever i ≤ j such that the composition Ai → Aj → Ak is equal
to Ai → Ak whenever i ≤ j ≤ k.

http://stacks.math.columbia.edu/tag/02CL
http://stacks.math.columbia.edu/tag/02CM
http://stacks.math.columbia.edu/tag/02CN
http://stacks.math.columbia.edu/tag/078G
http://stacks.math.columbia.edu/tag/078H
http://stacks.math.columbia.edu/tag/078I
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One similarly defines systems of groups, modules over a fixed ring, vector spaces
over a field, etc.

Exercise 2.2.078J Let I be a directed set and let (Ai, ϕij) be a system of rings over
I. Show that there exists a ring A and maps ϕi : Ai → A such that ϕj ◦ ϕij = ϕi
for all i ≤ j with the following universal property: Given any ring B and maps
ψi : Ai → B such that ψj ◦ ϕij = ψi for all i ≤ j, then there exists a unique ring
map ψ : A→ B such that ψi = ψ ◦ ϕi.

Definition 2.3.078K The ring A constructed in Exercise 2.2 is called the colimit of the
system. Notation colimAi.

Exercise 2.4.078L Let (I,≥) be a directed set and let (Ai, ϕij) be a system of rings
over I with colimit A. Prove that there is a bijection

Spec(A) = {(pi)i∈I | pi ⊂ Ai and pi = ϕ−1
ij (pj) ∀i ≤ j} ⊂

∏
i∈I

Spec(Ai)

The set on the right hand side of the equality is the limit of the sets Spec(Ai).
Notation lim Spec(Ai).

Exercise 2.5.078M Let (I,≥) be a directed set and let (Ai, ϕij) be a system of rings
over I with colimit A. Suppose that Spec(Aj) → Spec(Ai) is surjective for all
i ≤ j. Show that Spec(A)→ Spec(Ai) is surjective for all i. (Hint: You can try to
use Tychonoff, but there is also a basically trivial direct algebraic proof based on
Algebra, Lemma 16.9.)

Exercise 2.6.078N Let A ⊂ B be an integral ring extension. Prove that Spec(B) →
Spec(A) is surjective. Use the exercises above, the fact that this holds for a finite
ring extension (proved in the lectures), and by proving that B = colimBi is a
directed colimit of finite extensions A ⊂ Bi.

Exercise 2.7.02CO Let (I,≥) be a directed set. Let A be a ring and let (Ni, ϕi,i′) be a
directed system of A-modules indexed by I. Suppose that M is another A-module.
Prove that

colimi∈IM ⊗A Ni ∼= M ⊗A
(

colimi∈I Ni

)
.

Definition 2.8.0278 A module M over R is said to be of finite presentation over R if

it is isomorphic to the cokernel of a map of finite free modules R⊕n → R⊕m.

Exercise 2.9.02CP Prove that any module over any ring is

(1) the colimit of its finitely generated submodules, and
(2) in some way a colimit of finitely presented modules.

3. Additive and abelian categories

057X

Exercise 3.1.057Y Let k be a field. Let C be the category of filtered vector spaces
over k, see Homology, Definition 16.1 for the definition of a filtered object of any
category.

(1) Show that this is an additive category (explain carefuly what the direct
sum of two objects is).

(2) Let f : (V, F )→ (W,F ) be a morphism of C. Show that f has a kernel and
cokernel (explain precisely what the kernel and cokernel of f are).

http://stacks.math.columbia.edu/tag/078J
http://stacks.math.columbia.edu/tag/078K
http://stacks.math.columbia.edu/tag/078L
http://stacks.math.columbia.edu/tag/078M
http://stacks.math.columbia.edu/tag/078N
http://stacks.math.columbia.edu/tag/02CO
http://stacks.math.columbia.edu/tag/0278
http://stacks.math.columbia.edu/tag/02CP
http://stacks.math.columbia.edu/tag/057Y
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(3) Give an example of a map of C such that the canonical map Coim(f) →
Im(f) is not an isomorphism.

Exercise 3.2.057Z Let R be a Noetherian domain. Let C be the category of finitely
generated torsion free R-modules.

(1) Show that this is an additive category.
(2) Let f : N →M be a morphism of C. Show that f has a kernel and cokernel

(make sure you define precisely what the kernel and cokernel of f are).
(3) Give an example of a Noetherian domain R and a map of C such that the

canonical map Coim(f)→ Im(f) is not an isomorphism.

Exercise 3.3.0580 Give an example of a category which is additive and has kernels
and cokernels but which is not as in Exercises 3.1 and 3.2.

4. Tensor product

0CYG Tensor products are introduced in Algebra, Section 11. Let R be a ring. Let ModR
be the category of R-modules. We will say that a functor F : ModR → ModR

(1) is additive if F : HomR(M,N)→ HomR(F (M), F (N)) is a homomorphism
of abelian groups for any R-modules M,N , see Homology, Definition 3.1.

(2) R-linear if F : HomR(M,N) → HomR(F (M), F (N)) is R-linear for any
R-modules M,N ,

(3) right exact if for any short exact sequence 0 → M1 → M2 → M3 → 0 the
sequence F (M1)→ F (M2)→ F (M3)→ 0 is exact,

(4) left exact if for any short exact sequence 0 → M1 → M2 → M3 → 0 the
sequence 0→ F (M1)→ F (M2)→ F (M3) is exact,

(5) commutes with direct sums, if given a set I and R-modules Mi the maps
F (Mi)→ F (

⊕
Mi) induce an isomorphism

⊕
F (Mi) = F (

⊕
Mi).

Exercise 4.1.0CYH Let R be a ring. With notation as above.

(1) Give an example of a ring R and an additive functor F : ModR → ModR
which is not R-linear.

(2) Let N be an R-module. Show that the functor F (M) = M⊗RN is R-linear,
right exact, and commutes with direct sums,

(3) Conversely, show that any functor F : ModR → ModR which is R-linear,
right exact, and commutes with direct sums is of the form F (M) = M⊗RN
for some R-module N .

(4) Show that if in (3) we drop the assumption that F commutes with direct
sums, then the conclusion no longer holds.

5. Flat ring maps

0279

Exercise 5.1.02CQ Let S be a multiplicative subset of the ring A.

(1) For an A-module M show that S−1M = S−1A⊗AM .
(2) Show that S−1A is flat over A.

Exercise 5.2.02CR Find an injection M1 → M2 of A-modules such that M1 ⊗ N →
M2 ⊗N is not injective in the following cases:

(1) A = k[x, y] and N = (x, y) ⊂ A. (Here and below k is a field.)
(2) A = k[x, y] and N = A/(x, y).

http://stacks.math.columbia.edu/tag/057Z
http://stacks.math.columbia.edu/tag/0580
http://stacks.math.columbia.edu/tag/0CYH
http://stacks.math.columbia.edu/tag/02CQ
http://stacks.math.columbia.edu/tag/02CR
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Exercise 5.3.02CS Give an example of a ring A and a finite A-module M which is a
flat but not a projective A-module.

Remark 5.4.02CT If M is of finite presentation and flat over A, then M is projective
over A. Thus your example will have to involve a ring A which is not Noetherian.
I know of an example where A is the ring of C∞-functions on R.

Exercise 5.5.02CU Find a flat but not free module over Z(2).

Exercise 5.6.02CV Flat deformations.

(1) Suppose that k is a field and k[ε] is the ring of dual numbers k[ε] = k[x]/(x2)
and ε = x̄. Show that for any k-algebra A there is a flat k[ε]-algebra B such
that A is isomorphic to B/εB.

(2) Suppose that k = Fp = Z/pZ and

A = k[x1, x2, x3, x4, x5, x6]/(xp1, x
p
2, x

p
3, x

p
4, x

p
5, x

p
6).

Show that there exists a flat Z/p2Z-algebra B such that B/pB is isomorphic
to A. (So here p plays the role of ε.)

(3) Now let p = 2 and consider the same question for k = F2 = Z/2Z and

A = k[x1, x2, x3, x4, x5, x6]/(x2
1, x

2
2, x

2
3, x

2
4, x

2
5, x

2
6, x1x2 + x3x4 + x5x6).

However, in this case show that there does not exist a flat Z/4Z-algebra B
such that B/2B is isomorphic to A. (Find the trick! The same example
works in arbitrary characteristic p > 0, except that the computation is
more difficult.)

Exercise 5.7.02CW Let (A,m, k) be a local ring and let k ⊂ k′ be a finite field extension.
Show there exists a flat, local map of local rings A → B such that mB = mB and
B/mB is isomorphic to k′ as k-algebra. (Hint: first do the case where k ⊂ k′ is
generated by a single element.)

Remark 5.8.02CX The same result holds for arbitrary field extensions k ⊂ K.

6. The Spectrum of a ring

027A

Exercise 6.1.02CY Compute Spec(Z) as a set and describe its topology.

Exercise 6.2.02CZ Let A be any ring. For f ∈ A we define D(f) := {p ⊂ A | f 6∈ p}.
Prove that the open subsets D(f) form a basis of the topology of Spec(A).

Exercise 6.3.02D0 Prove that the map I 7→ V (I) defines a natural bijection

{I ⊂ A with I =
√
I} −→ {T ⊂ Spec(A) closed}

Definition 6.4.027B A topological space X is called quasi-compact if for any open
covering X =

⋃
i∈I Ui there is a finite subset {i1, . . . , in} ⊂ I such that X =

Ui1 ∪ . . . Uin .

Exercise 6.5.02D1 Prove that Spec(A) is quasi-compact for any ring A.

Definition 6.6.027C A topological space X is said to verify the separation axiom T0

if for any pair of points x, y ∈ X, x 6= y there is an open subset of X containing
one but not the other. We say that X is Hausdorff if for any pair x, y ∈ X, x 6= y
there are disjoint open subsets U, V such that x ∈ U and y ∈ V .

http://stacks.math.columbia.edu/tag/02CS
http://stacks.math.columbia.edu/tag/02CT
http://stacks.math.columbia.edu/tag/02CU
http://stacks.math.columbia.edu/tag/02CV
http://stacks.math.columbia.edu/tag/02CW
http://stacks.math.columbia.edu/tag/02CX
http://stacks.math.columbia.edu/tag/02CY
http://stacks.math.columbia.edu/tag/02CZ
http://stacks.math.columbia.edu/tag/02D0
http://stacks.math.columbia.edu/tag/027B
http://stacks.math.columbia.edu/tag/02D1
http://stacks.math.columbia.edu/tag/027C
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Exercise 6.7.02D2 Show that Spec(A) is not Hausdorff in general. Prove that Spec(A)
is T0. Give an example of a topological space X that is not T0.

Remark 6.8.02D3 Usually the word compact is reserved for quasi-compact and Haus-
dorff spaces.

Definition 6.9.027D A topological space X is called irreducible if X is not empty and
if X = Z1 ∪ Z2 with Z1, Z2 ⊂ X closed, then either Z1 = X or Z2 = X. A subset
T ⊂ X of a topological space is called irreducible if it is an irreducible topological
space with the topology induced from X. This definition implies T is irreducible if
and only if the closure T̄ of T in X is irreducible.

Exercise 6.10.02D4 Prove that Spec(A) is irreducible if and only if Nil(A) is a prime
ideal and that in this case it is the unique minimal prime ideal of A.

Exercise 6.11.02D5 Prove that a closed subset T ⊂ Spec(A) is irreducible if and only
if it is of the form T = V (p) for some prime ideal p ⊂ A.

Definition 6.12.027E A point x of an irreducible topological space X is called a generic
point of X if X is equal to the closure of the subset {x}.

Exercise 6.13.02D6 Show that in a T0 space X every irreducible closed subset has at
most one generic point.

Exercise 6.14.02D7 Prove that in Spec(A) every irreducible closed subset does have

a generic point. In fact show that the map p 7→ {p} is a bijection of Spec(A) with
the set of irreducible closed subsets of X.

Exercise 6.15.02D8 Give an example to show that an irreducible subset of Spec(Z)
does not necessarily have a generic point.

Definition 6.16.027F A topological space X is called Noetherian if any decreasing
sequence Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . of closed subsets of X stabilizes. (It is called
Artinian if any increasing sequence of closed subsets stabilizes.)

Exercise 6.17.02D9 Show that if the ring A is Noetherian then the topological space
Spec(A) is Noetherian. Give an example to show that the converse is false. (The
same for Artinian if you like.)

Definition 6.18.027G A maximal irreducible subset T ⊂ X is called an irreducible
component of the space X. Such an irreducible component of X is automatically a
closed subset of X.

Exercise 6.19.02DA Prove that any irreducible subset of X is contained in an irre-
ducible component of X.

Exercise 6.20.02DB Prove that a Noetherian topological space X has only finitely
many irreducible components, say X1, . . . , Xn, and that X = X1 ∪X2 ∪ . . . ∪Xn.
(Note that any X is always the union of its irreducible components, but that if
X = R with its usual topology for instance then the irreducible components of X
are the one point subsets. This is not terribly interesting.)

Exercise 6.21.02DC Show that irreducible components of Spec(A) correspond to min-
imal primes of A.

http://stacks.math.columbia.edu/tag/02D2
http://stacks.math.columbia.edu/tag/02D3
http://stacks.math.columbia.edu/tag/027D
http://stacks.math.columbia.edu/tag/02D4
http://stacks.math.columbia.edu/tag/02D5
http://stacks.math.columbia.edu/tag/027E
http://stacks.math.columbia.edu/tag/02D6
http://stacks.math.columbia.edu/tag/02D7
http://stacks.math.columbia.edu/tag/02D8
http://stacks.math.columbia.edu/tag/027F
http://stacks.math.columbia.edu/tag/02D9
http://stacks.math.columbia.edu/tag/027G
http://stacks.math.columbia.edu/tag/02DA
http://stacks.math.columbia.edu/tag/02DB
http://stacks.math.columbia.edu/tag/02DC
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Definition 6.22.027H A point x ∈ X is called closed if {x} = {x}. Let x, y be points
of X. We say that x is a specialization of y, or that y is a generalization of x if
x ∈ {y}.

Exercise 6.23.02DD Show that closed points of Spec(A) correspond to maximal ideals
of A.

Exercise 6.24.02DE Show that p is a generalization of q in Spec(A) if and only if p ⊂ q.
Characterize closed points, maximal ideals, generic points and minimal prime ideals
in terms of generalization and specialization. (Here we use the terminology that a
point of a possibly reducible topological space X is called a generic point if it is a
generic points of one of the irreducible components of X.)

Exercise 6.25.02DF Let I and J be ideals of A. What is the condition for V (I) and
V (J) to be disjoint?

Definition 6.26.027I A topological space X is called connected if it is nonempty
and not the union of two nonempty disjoint open subsets. A connected component
of X is a maximal connected subset. Any point of X is contained in a connected
component of X and any connected component of X is closed in X. (But in general
a connected component need not be open in X.)

Exercise 6.27.02DG Let A be a nonzero ring. Show that Spec(A) is disconnected iff
A ∼= B × C for certain nonzero rings B,C.

Exercise 6.28.02DH Let T be a connected component of Spec(A). Prove that T is
stable under generalization. Prove that T is an open subset of Spec(A) if A is
Noetherian. (Remark: This is wrong when A is an infinite product of copies of F2

for example. The spectrum of this ring consists of infinitely many closed points.)

Exercise 6.29.02DI Compute Spec(k[x]), i.e., describe the prime ideals in this ring,
describe the possible specializations, and describe the topology. (Work this out
when k is algebraically closed but also when k is not.)

Exercise 6.30.02DJ Compute Spec(k[x, y]), where k is algebraically closed. [Hint:
use the morphism ϕ : Spec(k[x, y]) → Spec(k[x]); if ϕ(p) = (0) then localize with
respect to S = {f ∈ k[x] | f 6= 0} and use result of lecture on localization and
Spec.] (Why do you think algebraic geometers call this affine 2-space?)

Exercise 6.31.02DK Compute Spec(Z[y]). [Hint: as above.] (Affine 1-space over Z.)

7. Localization

0766

Exercise 7.1.0767 Let A be a ring. Let S ⊂ A be a multiplicative subset. Let M

be an A-module. Let N ⊂ S−1M be an S−1A-submodule. Show that there exists
an A-submodule N ′ ⊂ M such that N = S−1N ′. (This useful result applies in
particular to ideals of S−1A.)

Exercise 7.2.0768 Let A be a ring. Let M be an A-module. Let m ∈M .

(1) Show that I = {a ∈ A | am = 0} is an ideal of A.
(2) For a prime p of A show that the image of m in Mp is zero if and only if

I 6⊂ p.

http://stacks.math.columbia.edu/tag/027H
http://stacks.math.columbia.edu/tag/02DD
http://stacks.math.columbia.edu/tag/02DE
http://stacks.math.columbia.edu/tag/02DF
http://stacks.math.columbia.edu/tag/027I
http://stacks.math.columbia.edu/tag/02DG
http://stacks.math.columbia.edu/tag/02DH
http://stacks.math.columbia.edu/tag/02DI
http://stacks.math.columbia.edu/tag/02DJ
http://stacks.math.columbia.edu/tag/02DK
http://stacks.math.columbia.edu/tag/0767
http://stacks.math.columbia.edu/tag/0768
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(3) Show that m is zero if and only if the image of m is zero in Mp for all
primes p of A.

(4) Show that m is zero if and only if the image of m is zero in Mm for all
maximal ideals m of A.

(5) Show that M = 0 if and only if Mm is zero for all maximal ideals m.

Exercise 7.3.0769 Find a pair (A, f) where A is a domain with three or more pairwise
distinct primes and f ∈ A is an element such that the principal localization Af =
{1, f, f2, . . .}−1A is a field.

Exercise 7.4.076A Let A be a ring. Let M be a finite A-module. Let S ⊂ A be a

multiplicative set. Assume that S−1M = 0. Show that there exists an f ∈ S such
that the principal localization Mf = {1, f, f2, . . .}−1M is zero.

Exercise 7.5.076B Give an example of a triple (A, I, S) where A is a ring, 0 6= I 6= A is

a proper nonzero ideal, and S ⊂ A is a multiplicative subset such that A/I ∼= S−1A
as A-algebras.

8. Nakayama’s Lemma

076C

Exercise 8.1.076D Let A be a ring. Let I be an ideal of A. Let M be an A-module.
Let x1, . . . , xn ∈M . Assume that

(1) M/IM is generated by x1, . . . , xn,
(2) M is a finite A-module,
(3) I is contained in every maximal ideal of A.

Show that x1, . . . , xn generate M . (Suggested solution: Reduce to a localization at
a maximal ideal of A using Exercise 7.2 and exactness of localization. Then reduce
to the statement of Nakayama’s lemma in the lectures by looking at the quotient
of M by the submodule generated by x1, . . . , xn.)

9. Length

027J

Definition 9.1.076E Let A be a ring. Let M be an A-module. The length of M as an
R-module is

lengthA(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi 6= Mi+1}.

In other words, the supremum of the lengths of chains of submodules.

Exercise 9.2.076F Show that a module M over a ring A has length 1 if and only if it
is isomorphic to A/m for some maximal ideal m in A.

Exercise 9.3.076G Compute the length of the following modules over the following
rings. Briefly(!) explain your answer. (Please feel free to use additivity of the
length function in short exact sequences, see Algebra, Lemma 51.3).

(1) The length of Z/120Z over Z.
(2) The length of C[x]/(x100 + x+ 1) over C[x].
(3) The length of R[x]/(x4 + 2x2 + 1) over R[x].

http://stacks.math.columbia.edu/tag/0769
http://stacks.math.columbia.edu/tag/076A
http://stacks.math.columbia.edu/tag/076B
http://stacks.math.columbia.edu/tag/076D
http://stacks.math.columbia.edu/tag/076E
http://stacks.math.columbia.edu/tag/076F
http://stacks.math.columbia.edu/tag/076G
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Exercise 9.4.02DL Let A = k[x, y](x,y) be the local ring of the affine plane at the origin.

Make any assumption you like about the field k. Suppose that f = x3 +x2y2 +y100

and g = y3 − x999. What is the length of A/(f, g) as an A-module? (Possible way
to proceed: think about the ideal that f and g generate in quotients of the form
A/mnA = k[x, y]/(x, y)n for varying n. Try to find n such that A/(f, g) + mnA

∼=
A/(f, g) + mn+1

A and use NAK.)

10. Associated primes

0CR7 Associated primes are discussed in Algebra, Section 62

Exercise 10.1.0CR8 Compute the set of associated primes for each of the following
modules.

(1) R = k[x, y] and M = R/(xy(x+ y)),
(2) R = Z[x] and M = R/(300x+ 75), and
(3) R = k[x, y, z] and M = R/(x3, x2y, xz).

Here as usual k is a field.

Exercise 10.2.0CR9 Give an example of a Noetherian ring R and a prime ideal p such

that p is not the only associated prime of R/p2.

Exercise 10.3.0CRA Let R be a Noetherian ring with incomparable prime ideals p, q,
i.e., p 6⊂ q and q 6⊂ p.

(1) Show that for N = R/(p ∩ q) we have Ass(N) = {p, q}.
(2) Show by an example that the module M = R/pq can have an associated

prime not equal to p or q.

11. Ext groups

0CRB Ext groups are defined in Algebra, Section 70.

Exercise 11.1.0CRC Compute all the Ext groups Exti(M,N) of the given modules in
the category of Z-modules (also known as the category of abelian groups).

(1) M = Z and N = Z,
(2) M = Z/4Z and N = Z/8Z,
(3) M = Q and N = Z/2Z, and
(4) M = Z/2Z and N = Q/Z.

Exercise 11.2.0CRD Let R = k[x, y] where k is a field.

(1) Show by hand that the Koszul complex

0→ R

 y
−x


−−−−−→ R⊕2 (x,y)−−−→ R

f 7→f(0,0)−−−−−−→ k → 0

is exact.
(2) Compute ExtiR(k, k) where k = R/(x, y) as an R-module.

Exercise 11.3.0CRE Give an example of a Noetherian ring R and finite modules M ,

N such that ExtiR(M,N) is nonzero for all i ≥ 0.

Exercise 11.4.0CRF Give an example of a ring R and ideal I such that Ext1
R(R/I,R/I)

is not a finite R-module. (We know this cannot happen if R is Noetherian by
Algebra, Lemma 70.9.)

http://stacks.math.columbia.edu/tag/02DL
http://stacks.math.columbia.edu/tag/0CR8
http://stacks.math.columbia.edu/tag/0CR9
http://stacks.math.columbia.edu/tag/0CRA
http://stacks.math.columbia.edu/tag/0CRC
http://stacks.math.columbia.edu/tag/0CRD
http://stacks.math.columbia.edu/tag/0CRE
http://stacks.math.columbia.edu/tag/0CRF
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12. Depth

0CS0 Depth is defined in Algebra, Section 71 and further studied in Dualizing Complexes,
Section 11.

Exercise 12.1.0CS1 Let R be a ring, I ⊂ R an ideal, and M an R-module. Compute
depthI(M) in the following cases.

(1) R = Z, I = (30), M = Z,
(2) R = Z, I = (30), M = Z/(300),
(3) R = Z, I = (30), M = Z/(7),
(4) R = k[x, y, z]/(x2 + y2 + z2), I = (x, y, z), M = R,
(5) R = k[x, y, z, w]/(xz, xw, yz, yw), I = (x, y, z, w), M = R.

Here k is a field. In the last two cases feel free to localize at the maximal ideal I.

Exercise 12.2.0CS2 Give an example of a Noetherian local ring (R,m, κ) of depth ≥ 1
and a prime ideal p such that

(1) depthm(R) ≥ 1,
(2) depthp(Rp) = 0, and
(3) dim(Rp) ≥ 1.

If we don’t ask for (3) then the exercise is too easy. Why?

Exercise 12.3.0CS3 Let (R,m) be a local Noetherian domain. Let M be a finite
R-module.

(1) If M is torsion free, show that M has depth at least 1 over R.
(2) Give an example with depth equal to 1.

Exercise 12.4.0CS4 For every m ≥ n ≥ 0 give an example of a Noetherian local ring
R with dim(R) = m and depth(R) = n.

Exercise 12.5.0CSZ Let (R,m) be a Noetherian local ring. Let M be a finite R-module.
Show that there exists a canonical short exact sequence

0→ K →M → Q→ 0

such that the following are true

(1) depth(Q) ≥ 1,
(2) K is zero or Supp(K) = {m}, and
(3) lengthR(K) <∞.

Hint: using the Noetherian property show that there exists a maximal submodule
K as in (2) and then show that Q = M/K satisfies (1) and K satisfies (3).

Exercise 12.6.0CT0 Let (R,m) be a Noetherian local ring. Let M be a finite R-module
of depth ≥ 2. Let N ⊂M be a nonzero submodule.

(1) Show that depth(N) ≥ 1.
(2) Show that depth(N) = 1 if and only if the quotient module M/N has

depth(M/N) = 0.
(3) Show there exists a submodule N ′ ⊂M with N ⊂ N ′ of finite colength, i.e.,

lengthR(N ′/N) < ∞, such that N ′ has depth ≥ 2. Hint: Apply Exercise
12.5 to M/N and choose N ′ to be the inverse image of K.

Exercise 12.7.0CT1 Let (R,m) be a Noetherian local ring. Assume that R is reduced,
i.e., R has no nonzero nilpotent elements. Assume moreover that R has two distinct
minimal primes p and q.

http://stacks.math.columbia.edu/tag/0CS1
http://stacks.math.columbia.edu/tag/0CS2
http://stacks.math.columbia.edu/tag/0CS3
http://stacks.math.columbia.edu/tag/0CS4
http://stacks.math.columbia.edu/tag/0CSZ
http://stacks.math.columbia.edu/tag/0CT0
http://stacks.math.columbia.edu/tag/0CT1


EXERCISES 12

(1) Show that the sequence of R-modules

0→ R→ R/p⊕R/q→ R/p + q→ 0

is exact (check at all the spots). The maps are x 7→ (x mod p, x mod q)
and (y mod p, z mod q) 7→ (y − z mod p + q).

(2) Show that if depth(R) ≥ 2, then dim(R/p + q) ≥ 1.
(3) Show that if depth(R) ≥ 2, then U = Spec(R) \ {m} is a connected topo-

logical space.

This proves a very special case of Hartshorne’s connectedness theorem which says
that the punctured spectrum U of a local Noetherian ring of depth ≥ 2 is connected.

Exercise 12.8.0CT2 Let (R,m) be a Noetherian local ring. Let x, y ∈ m be a regular
sequence of length 2. For any n ≥ 2 show that there do not exist a, b ∈ R with

xn−1yn−1 = axn + byn

Suggestion: First try for n = 2 to see how to argue. Remark: There is a vast
generalization of this result called the monomial conjecture.

13. Cohen-Macaulay modules and rings

0CT3 Cohen-Macaulay modules are studied in Algebra, Section 102 and Cohen-Macaulay
rings are studied in Algebra, Section 103.

Exercise 13.1.0CT4 In the following cases, please answer yes or no. No explanation
or proof necessary.

(1) Let p be a prime number. Is the local ring Z(p) a Cohen-Macaulay local
ring?

(2) Let p be a prime number. Is the local ring Z(p) a regular local ring?
(3) Let k be a field. Is the local ring k[x](x) a Cohen-Macaulay local ring?
(4) Let k be a field. Is the local ring k[x](x) a regular local ring?

(5) Let k be a field. Is the local ring (k[x, y]/(y2−x3))(x,y) = k[x, y](x,y)/(y
2−

x3) a Cohen-Macaulay local ring?
(6) Let k be a field. Is the local ring (k[x, y]/(y2, xy))(x,y) = k[x, y](x,y)/(y

2, xy)
a Cohen-Macaulay local ring?

14. Singularities

027K

Exercise 14.1.02DM Let k be any field. Suppose that A = k[[x, y]]/(f) and B =

k[[u, v]]/(g), where f = xy and g = uv + δ with δ ∈ (u, v)3. Show that A and B
are isomorphic rings.

Remark 14.2.02DN A singularity on a curve over a field k is called an ordinary double
point if the complete local ring of the curve at the point is of the form k′[[x, y]]/(f),
where (a) k′ is a finite separable extension of k, (b) the initial term of f has degree
two, i.e., it looks like q = ax2 + bxy+ cy2 for some a, b, c ∈ k′ not all zero, and (c) q
is a nondegenerate quadratic form over k′ (in char 2 this means that b is not zero).
In general there is one isomorphism class of such rings for each isomorphism class
of pairs (k′, q).

http://stacks.math.columbia.edu/tag/0CT2
http://stacks.math.columbia.edu/tag/0CT4
http://stacks.math.columbia.edu/tag/02DM
http://stacks.math.columbia.edu/tag/02DN
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Exercise 14.3.0D1S Let R be a ring. Let n ≥ 1. Let A, B be n × n matrices with
coefficients in R such that AB = f1n×n for some nonzerodivisor f in R. Set
S = R/(f). Show that

. . .→ S⊕n
B−→ S⊕n

A−→ S⊕n
B−→ S⊕n → . . .

is exact.

15. Hilbert Nullstellensatz

027L

Exercise 15.1.02DO A silly argument using the complex numbers! Let C be the com-
plex number field. Let V be a vector space over C. The spectrum of a linear
operator T : V → V is the set of complex numbers λ ∈ C such that the operator
T − λidV is not invertible.

(1) Show that C(X) = f.f.(C[X]) has uncountable dimension over C.
(2) Show that any linear operator on V has a nonempty spectrum if the di-

mension of V is finite or countable.
(3) Show that if a finitely generated C-algebra R is a field, then the map C→ R

is an isomorphism.
(4) Show that any maximal ideal m of C[x1, . . . , xn] is of the form (x1 −

α1, . . . , xn − αn) for some αi ∈ C.

Remark 15.2.027M Let k be a field. Then for every integer n ∈ N and every maximal
ideal m ⊂ k[x1, . . . , xn] the quotient k[x1, . . . , xn]/m is a finite field extension of k.
This will be shown later in the course. Of course (please check this) it implies a
similar statement for maximal ideals of finitely generated k-algebras. The exercise
above proves it in the case k = C.

Exercise 15.3.02DP Let k be a field. Please use Remark 15.2.

(1) Let R be a k-algebra. Suppose that dimk R < ∞ and that R is a domain.
Show that R is a field.

(2) Suppose that R is a finitely generated k-algebra, and f ∈ R not nilpotent.
Show that there exists a maximal ideal m ⊂ R with f 6∈ m.

(3) Show by an example that this statement fails when R is not of finite type
over a field.

(4) Show that any radical ideal I ⊂ C[x1, . . . , xn] is the intersection of the
maximal ideals containing it.

Remark 15.4.02DQ This is the Hilbert Nullstellensatz. Namely it says that the closed
subsets of Spec(k[x1, . . . , xn]) (which correspond to radical ideals by a previous
exercise) are determined by the closed points contained in them.

Exercise 15.5.02DR Let A = C[x11, x12, x21, x22, y11, y12, y21, y22]. Let I be the ideal
of A generated by the entries of the matrix XY , with

X =

(
x11 x12

x21 x22

)
and Y =

(
y11 y12

y21 y22

)
.

Find the irreducible components of the closed subset V (I) of Spec(A). (I mean
describe them and give equations for each of them. You do not have to prove that
the equations you write down define prime ideals.) Hints:

http://stacks.math.columbia.edu/tag/0D1S
http://stacks.math.columbia.edu/tag/02DO
http://stacks.math.columbia.edu/tag/027M
http://stacks.math.columbia.edu/tag/02DP
http://stacks.math.columbia.edu/tag/02DQ
http://stacks.math.columbia.edu/tag/02DR
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(1) You may use the Hilbert Nullstellensatz, and it suffices to find irreducible
locally closed subsets which cover the set of closed points of V (I).

(2) There are two easy components.
(3) An image of an irreducible set under a continuous map is irreducible.

16. Dimension

02LT

Exercise 16.1.076H Construct a ring A with finitely many prime ideals having dimen-
sion > 1.

Exercise 16.2.076I Let f ∈ C[x, y] be a nonconstant polynomial. Show that C[x, y]/(f)
has dimension 1.

Exercise 16.3.02LU Let (R,m) be a Noetherian local ring. Let n ≥ 1. Let m′ =
(m, x1, . . . , xn) in the polynomial ring R[x1, . . . , xn]. Show that

dim(R[x1, . . . , xn]m′) = dim(R) + n.

17. Catenary rings

027N

Definition 17.1.027O A Noetherian ring A is said to be catenary if for any triple of
prime ideals p1 ⊂ p2 ⊂ p3 we have

ht(p3/p1) = ht(p3/p2) + ht(p2/p1).

Here ht(p/q) means the height of p/q in the ring A/q. In a formula

ht(p/q) = dim(Ap/qAp) = dim((A/q)p) = dim((A/q)p/q)

A topological space X is catenary, if given T ⊂ T ′ ⊂ X with T and T ′ closed and
irreducible, then there exists a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Tn = T ′

and every such chain has the same (finite) length.

Exercise 17.2.0CT5 Show that the notion of catenary defined in Algebra, Definition
104.1 agrees with the notion of Definition 17.1 for Noetherian rings.

Exercise 17.3.02DS Show that a Noetherian local domain of dimension 2 is catenary.

Exercise 17.4.077D Let k be a field. Show that a finite type k-algebra is catenary.

Exercise 17.5.0CT6 Give an example of a finite, sober, catenary topological space
X which does not have a dimension function δ : X → Z. Here δ : X → Z is a
dimension function if for x, y ∈ X we have

(1) x y and x 6= y implies δ(x) > δ(y),
(2) x  y and δ(x) ≥ δ(y) + 2 implies there exists a z ∈ X with x  z  y

and δ(x) > δ(z) > δ(y).

Describe your space clearly and succintly explain why there cannot be a dimension
function.

http://stacks.math.columbia.edu/tag/076H
http://stacks.math.columbia.edu/tag/076I
http://stacks.math.columbia.edu/tag/02LU
http://stacks.math.columbia.edu/tag/027O
http://stacks.math.columbia.edu/tag/0CT5
http://stacks.math.columbia.edu/tag/02DS
http://stacks.math.columbia.edu/tag/077D
http://stacks.math.columbia.edu/tag/0CT6
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18. Fraction fields

027P

Exercise 18.1.02DT Consider the domain

Q[r, s, t]/(s2 − (r − 1)(r − 2)(r − 3), t2 − (r + 1)(r + 2)(r + 3)).

Find a domain of the form Q[x, y]/(f) with isomorphic field of fractions.

19. Transcendence degree

077E

Exercise 19.1.077F Let k ⊂ K ⊂ K ′ be field extensions with K ′ algebraic over
K. Prove that trdegk(K) = trdegk(K ′). (Hint: Show that if x1, . . . , xd ∈ K
are algebraically independent over k and d < trdegk(K ′) then k(x1, . . . , xd) ⊂ K
cannot be algebraic.)

Exercise 19.2.0CVP Let k be a field. Let K/k be a finitely generated extension of
transcendence degree d. If V,W ⊂ K are finite dimensional k-subvector spaces
denote

VW = {f ∈ K | f =
∑

i=1,...,n
viwi for some n and vi ∈ V,wi ∈W}

This is a finite dimensional k-subvector space. Set V 2 = V V , V 3 = V V 2, etc.

(1) Show you can find V ⊂ K and ε > 0 such that dimV n ≥ εnd for all n ≥ 1.
(2) Conversely, show that for every finite dimensional V ⊂ K there exists a

C > 0 such that dimV n ≤ Cnd for all n ≥ 1. (One possible way to
proceed: First do this for subvector spaces of k[x1, . . . , xd]. Then do this
for subvector spaces of k(x1, . . . , xd). Finally, if K/k(x1, . . . , xd) is a finite
extension choose a basis of K over k(x1, . . . , xd) and argue using expansion
in terms of this basis.)

(3) Conclude that you can redefine the transcendence degree in terms of growth
of powers of finite dimensional subvector spaces of K.

This is related to Gelfand-Kirillov dimension of (noncommutative) algebras over k.

20. Dimension of fibres

0CVQ Some questions related to the dimension formula, see Algebra, Section 112.

Exercise 20.1.0CVR Let k be your favorite algebraically closed field. Below k[x] and
k[x, y] denote the polynomial rings.

(1) For every integer n ≥ 0 find a finite type extension k[x] ⊂ A of domains
such that the spectrum of A/xA has exactly n irreducible components.

(2) Make an example of a finite type extension k[x] ⊂ A of domains such that
the spectrum of A/(x− α)A is nonempty and reducible for every α ∈ k.

(3) Make an example of a finite type extension k[x, y] ⊂ A of domains such that
the spectrum of A/(x−α, y−β)A is irreducible1 for all (α, β) ∈ k2 \{(0, 0)}
and the spectrum of A/(x, y)A is nonempty and reducible.

Exercise 20.2.0CVS Let k be your favorite algebraically closed field. Let n ≥ 1. Let
k[x1, . . . , xn] be the polynomial ring. Set m = (x1, . . . , xn). Let k[x1, . . . , xn] ⊂ A
be a finite type extension of domains. Set d = dim(A).

1Recall that irreducible implies nonempty.

http://stacks.math.columbia.edu/tag/02DT
http://stacks.math.columbia.edu/tag/077F
http://stacks.math.columbia.edu/tag/0CVP
http://stacks.math.columbia.edu/tag/0CVR
http://stacks.math.columbia.edu/tag/0CVS
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(1) Show that d− 1 ≥ dim(A/mA) ≥ d− n if A/mA 6= 0.
(2) Show by example that every value can occur.
(3) Show by example that Spec(A/mA) can have irreducible components of

different dimensions.

21. Finite locally free modules

027Q

Definition 21.1.027R Let A be a ring. Recall that a finite locally free A-module M
is a module such that for every p ∈ Spec(A) there exists an f ∈ A, f 6∈ p such
that Mf is a finite free Af -module. We say M is an invertible module if M is finite
locally free of rank 1, i.e., for every p ∈ Spec(A) there exists an f ∈ A, f 6∈ p such
that Mf

∼= Af as an Af -module.

Exercise 21.2.078P Prove that the tensor product of finite locally free modules is finite
locally free. Prove that the tensor product of two invertible modules is invertible.

Definition 21.3.078Q Let A be a ring. The class group of A, sometimes called the
Picard group of A is the set Pic(A) of isomorphism classes of invertible A-modules
endowed with a group operation defined by tensor product (see Exercise 21.2).

Note that the class group of A is trivial exactly when every invertible module is
isomorphic to a free module of rank 1.

Exercise 21.4.078R Show that the class groups of the following rings are trivial

(1) a polynomial ring A = k[x] where k is a field,
(2) the integers A = Z,
(3) a polynomial ring A = k[x, y] where k is a field, and
(4) the quotient k[x, y]/(xy) where k is a field.

Exercise 21.5.078S Show that the class group of the ring A = k[x, y]/(y2 − f(x))
where k is a field of characteristic not 2 and where f(x) = (x− t1) . . . (x− tn) with
t1, . . . , tn ∈ k distinct and n ≥ 3 an odd integer is not trivial. (Hint: Show that the
ideal (y, x− t1) defines a nontrivial element of Pic(A).)

Exercise 21.6.02DU Let A be a ring.

(1) Suppose that M is a finite locally free A-module, and suppose that ϕ :
M →M is an endomorphism. Define/construct the trace and determinant
of ϕ and prove that your construction is “functorial in the triple (A,M,ϕ)”.

(2) Show that if M,N are finite locally free A-modules, and if ϕ : M → N and
ψ : N →M then Trace(ϕ ◦ ψ) = Trace(ψ ◦ ϕ) and det(ϕ ◦ ψ) = det(ψ ◦ ϕ).

(3) In case M is finite locally free show that Trace defines an A-linear map
EndA(M)→ A and det defines a multiplicative map EndA(M)→ A.

Exercise 21.7.02DV Now suppose that B is an A-algebra which is finite locally free as
an A-module, in other words B is a finite locally free A-algebra.

(1) Define TraceB/A and NormB/A using Trace and det from Exercise 21.6.
(2) Let b ∈ B and let π : Spec(B)→ Spec(A) be the induced morphism. Show

that π(V (b)) = V (NormB/A(b)). (Recall that V (f) = {p | f ∈ p}.)
(3) (Base change.) Suppose that i : A→ A′ is a ring map. Set B′ = B ⊗A A′.

Indicate why i(NormB/A(b)) equals NormB′/A′(b⊗ 1).
(4) Compute NormB/A(b) when B = A×A×A× . . .×A and b = (a1, . . . , an).

http://stacks.math.columbia.edu/tag/027R
http://stacks.math.columbia.edu/tag/078P
http://stacks.math.columbia.edu/tag/078Q
http://stacks.math.columbia.edu/tag/078R
http://stacks.math.columbia.edu/tag/078S
http://stacks.math.columbia.edu/tag/02DU
http://stacks.math.columbia.edu/tag/02DV
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(5) Compute the norm of y−y3 under the finite flat map Q[x]→ Q[y], x→ yn.
(Hint: use the “base change” A = Q[x] ⊂ A′ = Q(ζn)(x1/n).)

22. Glueing

027S

Exercise 22.1.02DW Suppose that A is a ring and M is an A-module. Let fi, i ∈ I be
a collection of elements of A such that

Spec(A) =
⋃
D(fi).

(1) Show that if Mfi is a finite Afi-module, then M is a finite A-module.
(2) Show that if Mfi is a flat Afi-module, then M is a flat A-module. (This is

kind of silly if you think about it right.)

Remark 22.2.02DX In algebraic geometric language this means that the property of
“being finitely generated” or “being flat” is local for the Zariski topology (in a suit-
able sense). You can also show this for the property “being of finite presentation”.

Exercise 22.3.078T Suppose that A→ B is a ring map. Let fi ∈ A, i ∈ I and gj ∈ B,
j ∈ J be collections of elements such that

Spec(A) =
⋃
D(fi) and Spec(B) =

⋃
D(gj).

Show that if Afi → Bfigj is of finite type for all i, j then A→ B is of finite type.

23. Going up and going down

027T

Definition 23.1.027U Let φ : A → B be a homomorphism of rings. We say that the
going-up theorem holds for φ if the following condition is satisfied:

(GU) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ∈ Spec(B) lying
over p, there exists P ′ ∈ Spec(B) lying over p′ such that P ⊂ P ′.

Similarly, we say that the going-down theorem holds for φ if the following condition
is satisfied:

(GD) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ′ ∈ Spec(B) lying
over p′, there exists P ∈ Spec(B) lying over p such that P ⊂ P ′.

Exercise 23.2.02DY In each of the following cases determine whether (GU), (GD)
holds, and explain why. (Use any Prop/Thm/Lemma you can find, but check the
hypotheses in each case.)

(1) k is a field, A = k, B = k[x].
(2) k is a field, A = k[x], B = k[x, y].
(3) A = Z, B = Z[1/11].
(4) k is an algebraically closed field, A = k[x, y], B = k[x, y, z]/(x2−y, z2−x).
(5) A = Z, B = Z[i, 1/(2 + i)].
(6) A = Z, B = Z[i, 1/(14 + 7i)].
(7) k is an algebraically closed field, A = k[x], B = k[x, y, 1/(xy− 1)]/(y2− y).

Exercise 23.3.02DZ Let k be an algebraically closed field. Compute the image in
Spec(k[x, y]) of the following maps:

(1) Spec(k[x, yx−1]) → Spec(k[x, y]), where k[x, y] ⊂ k[x, yx−1] ⊂ k[x, y, x−1].
(Hint: To avoid confusion, give the element yx−1 another name.)

http://stacks.math.columbia.edu/tag/02DW
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(2) Spec(k[x, y, a, b]/(ax− by − 1))→ Spec(k[x, y]).
(3) Spec(k[t, 1/(t− 1)])→ Spec(k[x, y]), induced by x 7→ t2, and y 7→ t3.
(4) k = C (complex numbers), Spec(k[s, t]/(s3+t3−1))→ Spec(k[x, y]), where

x 7→ s2, y 7→ t2.

Remark 23.4.02E0 Finding the image as above usually is done by using elimination
theory.

24. Fitting ideals

027V

Exercise 24.1.02E1 Let R be a ring and let M be a finite R-module. Choose a
presentation ⊕

j∈J
R −→ R⊕n −→M −→ 0.

of M . Note that the map R⊕n →M is given by a sequence of elements x1, . . . , xn
of M . The elements xi are generators of M . The map

⊕
j∈J R → R⊕n is given

by a n × J matrix A with coefficients in R. In other words, A = (aij)i=1,...,n,j∈J .
The columns (a1j , . . . , anj), j ∈ J of A are said to be the relations. Any vector
(ri) ∈ R⊕n such that

∑
rixi = 0 is a linear combination of the columns of A. Of

course any finite R-module has a lot of different presentations.

(1) Show that the ideal generated by the (n − k) × (n − k) minors of A is
independent of the choice of the presentation. This ideal is the kth Fitting
ideal of M . Notation Fitk(M).

(2) Show that Fit0(M) ⊂ Fit1(M) ⊂ Fit2(M) ⊂ . . .. (Hint: Use that a
determinant can be computed by expanding along a column.)

(3) Show that the following are equivalent:
(a) Fitr−1(M) = (0) and Fitr(M) = R, and
(b) M is locally free of rank r.

25. Hilbert functions

027W

Definition 25.1.027X A numerical polynomial is a polynomial f(x) ∈ Q[x] such that
f(n) ∈ Z for every integer n.

Definition 25.2.027Y A graded module M over a ring A is an A-module M endowed
with a direct sum decomposition

⊕
n∈ZMn into A-submodules. We will say that M

is locally finite if all of the Mn are finite A-modules. Suppose that A is a Noetherian
ring and that ϕ is a Euler-Poincaré function on finite A-modules. This means that
for every finitely generated A-module M we are given an integer ϕ(M) ∈ Z and for
every short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

we have ϕ(M) = ϕ(M ′) + ϕ(M ′). The Hilbert function of a locally finite graded
module M (with respect to ϕ) is the function χϕ(M,n) = ϕ(Mn). We say that
M has a Hilbert polynomial if there is some numerical polynomial Pϕ such that
χϕ(M,n) = Pϕ(n) for all sufficiently large integers n.

http://stacks.math.columbia.edu/tag/02E0
http://stacks.math.columbia.edu/tag/02E1
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Definition 25.3.027Z A graded A-algebra is a gradedA-moduleB =
⊕

n≥0Bn together
with an A-bilinear map

B ×B −→ B, (b, b′) 7−→ bb′

that turns B into an A-algebra so that Bn ·Bm ⊂ Bn+m. Finally, a graded module
M over a graded A-algebra B is given by a graded A-module M together with a
(compatible) B-module structure such that Bn ·Md ⊂Mn+d. Now you can define
homomorphisms of graded modules/rings, graded submodules, graded ideals, exact
sequences of graded modules, etc, etc.

Exercise 25.4.02E2 Let A = k a field. What are all possible Euler-Poincaré functions
on finite A-modules in this case?

Exercise 25.5.02E3 Let A = Z. What are all possible Euler-Poincaré functions on
finite A-modules in this case?

Exercise 25.6.02E4 Let A = k[x, y]/(xy) with k algebraically closed. What are all
possible Euler-Poincaré functions on finite A-modules in this case?

Exercise 25.7.02E5 Suppose that A is Noetherian. Show that the kernel of a map of
locally finite graded A-modules is locally finite.

Exercise 25.8.02E6 Let k be a field and let A = k and B = k[x, y] with grading
determined by deg(x) = 2 and deg(y) = 3. Let ϕ(M) = dimk(M). Compute the
Hilbert function of B as a graded k-module. Is there a Hilbert polynomial in this
case?

Exercise 25.9.02E7 Let k be a field and let A = k and B = k[x, y]/(x2, xy) with grad-
ing determined by deg(x) = 2 and deg(y) = 3. Let ϕ(M) = dimk(M). Compute
the Hilbert function of B as a graded k-module. Is there a Hilbert polynomial in
this case?

Exercise 25.10.02E8 Let k be a field and let A = k. Let ϕ(M) = dimk(M). Fix d ∈ N.

Consider the graded A-algebra B = k[x, y, z]/(xd+yd+zd), where x, y, z each have
degree 1. Compute the Hilbert function of B. Is there a Hilbert polynomial in this
case?

26. Proj of a ring

0280

Definition 26.1.0281 Let R be a graded ring. A homogeneous ideal is simply an ideal
I ⊂ R which is also a graded submodule of R. Equivalently, it is an ideal generated
by homogeneous elements. Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous pieces in R then fi ∈ I for each i.

Definition 26.2.0282 We define the homogeneous spectrum Proj(R) of the graded ring
R to be the set of homogeneous, prime ideals p of R such that R+ 6⊂ p. Note that
Proj(R) is a subset of Spec(R) and hence has a natural induced topology.

http://stacks.math.columbia.edu/tag/027Z
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http://stacks.math.columbia.edu/tag/02E6
http://stacks.math.columbia.edu/tag/02E7
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Definition 26.3.0283 Let R = ⊕d≥0Rd be a graded ring, let f ∈ Rd and assume that
d ≥ 1. We define R(f) to be the subring of Rf consisting of elements of the form
r/fn with r homogeneous and deg(r) = nd. Furthermore, we define

D+(f) = {p ∈ Proj(R)|f 6∈ p}.

Finally, for a homogeneous ideal I ⊂ R we define V+(I) = V (I) ∩ Proj(R).

Exercise 26.4.02E9 On the topology on Proj(R). With definitions and notation as
above prove the following statements.

(1) Show that D+(f) is open in Proj(R).
(2) Show that D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . . + gm be an element of R with gi ∈ Ri. Express D(g) ∩

Proj(R) in terms of D+(gi), i ≥ 1 and D(g0)∩Proj(R). No proof necessary.
(4) Let g ∈ R0 be a homogeneous element of degree 0. Express D(g)∩Proj(R)

in terms of D+(fα) for a suitable family fα ∈ R of homogeneous elements
of positive degree.

(5) Show that the collection {D+(f)} of opens forms a basis for the topology
of Proj(R).

(6)078U Show that there is a canonical bijection D+(f)→ Spec(R(f)). (Hint: Imi-
tate the proof for Spec but at some point thrown in the radical of an ideal.)

(7) Show that the map from (6) is a homeomorphism.
(8) Give an example of an R such that Proj(R) is not quasi-compact. No proof

necessary.
(9) Show that any closed subset T ⊂ Proj(R) is of the form V+(I) for some

homogeneous ideal I ⊂ R.

Remark 26.5.02EA There is a continuous map Proj(R) −→ Spec(R0).

Exercise 26.6.02EB If R = A[X] with deg(X) = 1, show that the natural map
Proj(R)→ Spec(A) is a bijection and in fact a homeomorphism.

Exercise 26.7.02EC Blowing up: part I. In this exercise R = BlI(A) = A⊕I⊕I2⊕ . . ..
Consider the natural map b : Proj(R)→ Spec(A). Set U = Spec(A)− V (I). Show
that

b : b−1(U) −→ U

is a homeomorphism. Thus we may think of U as an open subset of Proj(R). Let
Z ⊂ Spec(A) be an irreducible closed subscheme with generic point ξ ∈ Z. Assume
that ξ 6∈ V (I), in other words Z 6⊂ V (I), in other words ξ ∈ U , in other words
Z ∩ U 6= ∅. We define the strict transform Z ′ of Z to be the closure of the unique
point ξ′ lying above ξ. Another way to say this is that Z ′ is the closure in Proj(R)
of the locally closed subset Z ∩ U ⊂ U ⊂ Proj(R).

Exercise 26.8.02ED Blowing up: Part II. Let A = k[x, y] where k is a field, and let
I = (x, y). Let R be the blow up algebra for A and I.

(1) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({y}) are
disjoint.

(2) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({x− y2}) are
not disjoint.

(3) Find an ideal J ⊂ A such that V (J) = V (I) and such that the strict
transforms of Z1 = V ({x}) and Z2 = V ({x− y2}) are disjoint.

http://stacks.math.columbia.edu/tag/0283
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Exercise 26.9.02EE Let R be a graded ring.

(1) Show that Proj(R) is empty if Rn = (0) for all n >> 0.
(2) Show that Proj(R) is an irreducible topological space if R is a domain and

R+ is not zero. (Recall that the empty topological space is not irreducible.)

Exercise 26.10.02EF Blowing up: Part III. Consider A, I and U , Z as in the definition

of strict transform. Let Z = V (p) for some prime ideal p. Let Ā = A/p and let Ī
be the image of I in Ā.

(1) Show that there exists a surjective ring map R := BlI(A)→ R̄ := BlĪ(Ā).
(2) Show that the ring map above induces a bijective map from Proj(R̄) onto

the strict transform Z ′ of Z. (This is not so easy. Hint: Use 5(b) above.)
(3) Conclude that the strict transform Z ′ = V+(P ) where P ⊂ R is the homo-

geneous ideal defined by Pd = Id ∩ p.
(4) Suppose that Z1 = V (p) and Z2 = V (q) are irreducible closed subsets

defined by prime ideals such that Z1 6⊂ Z2, and Z2 6⊂ Z1. Show that
blowing up the ideal I = p+q separates the strict transforms of Z1 and Z2,
i.e., Z ′1 ∩ Z ′2 = ∅. (Hint: Consider the homogeneous ideal P and Q from
part (c) and consider V (P +Q).)

27. Cohen-Macaulay rings of dimension 1

0284

Definition 27.1.0285 A Noetherian local ring A is said to be Cohen-Macaulay of
dimension d if it has dimension d and there exists a system of parameters x1, . . . , xd
for A such that xi is a nonzerodivisor in A/(x1, . . . , xi−1) for i = 1, . . . , d.

Exercise 27.2.02EG Cohen-Macaulay rings of dimension 1. Part I: Theory.

(1) Let (A,m) be a local Noetherian with dimA = 1. Show that if x ∈ m is
not a zerodivisor then
(a) dimA/xA = 0, in other words A/xA is Artinian, in other words {x}

is a system of parameters for A.
(b) A is has no embedded prime.

(2) Conversely, let (A,m) be a local Noetherian ring of dimension 1. Show that
if A has no embedded prime then there exists a nonzerodivisor in m.

Exercise 27.3.02EH Cohen-Macaulay rings of dimension 1. Part II: Examples.

(1) Let A be the local ring at (x, y) of k[x, y]/(x2, xy).
(a) Show that A has dimension 1.
(b) Prove that every element of m ⊂ A is a zerodivisor.
(c) Find z ∈ m such that dimA/zA = 0 (no proof required).

(2) Let A be the local ring at (x, y) of k[x, y]/(x2). Find a nonzerodivisor in m
(no proof required).

Exercise 27.4.02EI Local rings of embedding dimension 1. Suppose that (A,m, k) is
a Noetherian local ring of embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Show that the function f(n) = dimk m
n/mn+1 is either constant with value 1, or

its values are

1, 1, . . . , 1, 0, 0, 0, 0, 0, . . .
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Exercise 27.5.02EJ Regular local rings of dimension 1. Suppose that (A,m, k) is a
regular Noetherian local ring of dimension 1. Recall that this means that A has
dimension 1 and embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Let x ∈ m be any element whose class in m/m2 is not zero.

(1) Show that for every element y of m there exists an integer n such that y
can be written as y = uxn with u ∈ A∗ a unit.

(2) Show that x is a nonzerodivisor in A.
(3) Conclude that A is a domain.

Exercise 27.6.02EK Let (A,m, k) be a Noetherian local ring with associated graded
Grm(A).

(1) Suppose that x ∈ md maps to a nonzerodivisor x̄ ∈ md/md+1 in degree d of
Grm(A). Show that x is a nonzerodivisor.

(2) Suppose the depth of A is at least 1. Namely, suppose that there exists
a nonzerodivisor y ∈ m. In this case we can do better: assume just that
x ∈ md maps to the element x̄ ∈ md/md+1 in degree d of Grm(A) which is
a nonzerodivisor on sufficiently high degrees: ∃N such that for all n ≥ N
the map of multiplication by x̄

mn/mn+1 −→ mn+d/mn+d+1

is injective. Then show that x is a nonzerodivisor.

Exercise 27.7.02EL Suppose that (A,m, k) is a Noetherian local ring of dimension 1.
Assume also that the embedding dimension of A is 2, i.e., assume that

dimk m/m
2 = 2.

Notation: f(n) = dimk m
n/mn+1. Pick generators x, y ∈ m and write Grm(A) =

k[x̄, ȳ]/I for some homogeneous ideal I.

(1) Show that there exists a homogeneous element F ∈ k[x̄, ȳ] such that I ⊂ (F )
with equality in all sufficiently high degrees.

(2) Show that f(n) ≤ n+ 1.
(3) Show that if f(n) < n+ 1 then n ≥ deg(F ).
(4) Show that if f(n) < n+ 1, then f(n+ 1) ≤ f(n).
(5) Show that f(n) = deg(F ) for all n >> 0.

Exercise 27.8.02EM Cohen-Macaulay rings of dimension 1 and embedding dimension
2. Suppose that (A,m, k) is a Noetherian local ring which is Cohen-Macaulay of
dimension 1. Assume also that the embedding dimension of A is 2, i.e., assume
that

dimk m/m
2 = 2.

Notations: f , F , x, y ∈ m, I as in Ex. 6 above. Please use any results from the
problems above.

(1) Suppose that z ∈ m is an element whose class in m/m2 is a linear form
αx̄+ βȳ ∈ k[x̄, ȳ] which is coprime with f .
(a) Show that z is a nonzerodivisor on A.
(b) Let d = deg(F ). Show that mn = zn+1−dmd−1 for all sufficiently large

n. (Hint: First show zn+1−dmd−1 → mn/mn+1 is surjective by what
you know about Grm(A). Then use NAK.)
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(2) What condition on k guarantees the existence of such a z? (No proof
required; it’s too easy.)
Now we are going to assume there exists a z as above. This turns out to be
a harmless assumption (in the sense that you can reduce to the situation
where it holds in order to obtain the results in parts (d) and (e) below).

(3) Now show that m` = z`−d+1md−1 for all ` ≥ d.
(4) Conclude that I = (F ).
(5) Conclude that the function f has values

2, 3, 4, . . . , d− 1, d, d, d, d, d, d, d, . . .

Remark 27.9.02EN This suggests that a local Noetherian Cohen-Macaulay ring of
dimension 1 and embedding dimension 2 is of the form B/FB, where B is a 2-
dimensional regular local ring. This is more or less true (under suitable “niceness”
properties of the ring).

28. Infinitely many primes

0286 A section with a collection of strange questions on rings where infinitely many
primes are not invertible.

Exercise 28.1.02EO Give an example of a finite type Z-algebra R with the following
two properties:

(1) There is no ring map R→ Q.
(2) For every prime p there exists a maximal ideal m ⊂ R such that R/m ∼= Fp.

Exercise 28.2.02EP For f ∈ Z[x, u] we define fp(x) = f(x, xp) mod p ∈ Fp[x]. Give
an example of an f ∈ Z[x, u] such that the following two properties hold:

(1) There exist infinitely many p such that fp does not have a zero in Fp.
(2) For all p >> 0 the polynomial fp either has a linear or a quadratic factor.

Exercise 28.3.02EQ For f ∈ Z[x, y, u, v] we define fp(x, y) = f(x, y, xp, yp) mod p ∈
Fp[x, y]. Give an “interesting” example of an f such that fp is reducible for all
p >> 0. For example, f = xv − yu with fp = xyp − xpy = xy(xp−1 − yp−1) is
“uninteresting”; any f depending only on x, u is “uninteresting”, etc.

Remark 28.4.02ER Let h ∈ Z[y] be a monic polynomial of degree d. Then:

(1) The map A = Z[x]→ B = Z[y], x 7→ h is finite locally free of rank d.
(2) For all primes p the map Ap = Fp[x] → Bp = Fp[y], y 7→ h(y) mod p is

finite locally free of rank d.

Exercise 28.5.02ES Let h,A,B,Ap, Bp be as in the remark. For f ∈ Z[x, u] we define
fp(x) = f(x, xp) mod p ∈ Fp[x]. For g ∈ Z[y, v] we define gp(y) = g(y, yp) mod p ∈
Fp[y].

(1) Give an example of a h and g such that there does not exist a f with the
property

fp = NormBp/Ap
(gp).

(2) Show that for any choice of h and g as above there exists a nonzero f such
that for all p we have

NormBp/Ap
(gp) divides fp.

If you want you can restrict to the case h = yn, even with n = 2, but it is
true in general.
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(3) Discuss the relevance of this to Exercises 6 and 7 of the previous set.

Exercise 28.6.02ET Unsolved problems. They may be really hard or they may be
easy. I don’t know.

(1) Is there any f ∈ Z[x, u] such that fp is irreducible for an infinite number of
p? (Hint: Yes, this happens for f(x, u) = u− x− 1 and also for f(x, u) =
u2 − x2 + 1.)

(2) Let f ∈ Z[x, u] nonzero, and suppose degx(fp) = dp+ d′ for all large p. (In
other words degu(f) = d and the coefficient c of ud in f has degx(c) = d′.)
Suppose we can write d = d1 + d2 and d′ = d′1 + d′2 with d1, d2 > 0 and
d′1, d

′
2 ≥ 0 such that for all sufficiently large p there exists a factorization

fp = f1,pf2,p

with degx(f1,p) = d1p + d′1. Is it true that f comes about via a norm
construction as in Exercise 4? (More precisely, are there a h and g such
that NormBp/Ap

(gp) divides fp for all p >> 0.)
(3) Analogous question to the one in (b) but now with f ∈ Z[x1, x2, u1, u2] irre-

ducible and just assuming that fp(x1, x2) = f(x1, x2, x
p
1, x

p
2) mod p factors

for all p >> 0.

29. Filtered derived category

0287 In order to do the exercises in this section, please read the material in Homology,
Section 16. We will say A is a filtered object of A, to mean that A comes endowed
with a filtration F which we omit from the notation.

Exercise 29.1.0288 Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite and that each grp(I) is an injective object
of A. Show that there exists an isomorphism I ∼=

⊕
grp(I) with filtration F p(I)

corresponding to
⊕

p′≥p grp(I).

Exercise 29.2.0289 Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite. Show the following are equivalent:

(1) For any solid diagram

A
α
//

��

B

��
I

of filtered objects with (i) the filtrations on A and B are finite, and (ii)
gr(α) injective the dotted arrow exists making the diagram commute.

(2) Each grpI is injective.

Note that given a morphism α : A→ B of filtered objects with finite filtrations to
say that gr(α) injective is the same thing as saying that α is a strict monomorphism
in the category Fil(A). Namely, being a monomorphism means Ker(α) = 0 and
strict means that this also implies Ker(gr(α)) = 0. See Homology, Lemma 16.13.
(We only use the term “injective” for a morphism in an abelian category, although it
makes sense in any additive category having kernels.) The exercises above justifies
the following definition.
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Definition 29.3.028A Let A be an abelian category. Let I be a filtered object of A.
Assume the filtration on I is finite. We say I is filtered injective if each grp(I) is an
injective object of A.

We make the following definition to avoid having to keep saying “with a finite
filtration” everywhere.

Definition 29.4.028B Let A be an abelian category. We denote Filf (A) the full sub-
category of Fil(A) whose objects consist of those A ∈ Ob(Fil(A)) whose filtration
is finite.

Exercise 29.5.028C Let A be an abelian category. Assume A has enough injectives.

Let A be an object of Filf (A). Show that there exists a strict monomorphism

α : A→ I of A into a filtered injective object I of Filf (A).

Definition 29.6.028D Let A be an abelian category. Let α : K• → L• be a morphism
of complexes of Fil(A). We say that α is a filtered quasi-isomorphism if for each
p ∈ Z the morphism grp(K•)→ grp(L•) is a quasi-isomorphism.

Definition 29.7.028E Let A be an abelian category. Let K• be a complex of Filf (A).
We say that K• is filtered acyclic if for each p ∈ Z the complex grp(K•) is acyclic.

Exercise 29.8.028F Let A be an abelian category. Let α : K• → L• be a morphism

of bounded below complexes of Filf (A). (Note the superscript f .) Show that the
following are equivalent:

(1) α is a filtered quasi-isomorphism,
(2) for each p ∈ Z the map α : F pK• → F pL• is a quasi-isomorphism,
(3) for each p ∈ Z the map α : K•/F pK• → L•/F pL• is a quasi-isomorphism,

and
(4) the cone of α (see Derived Categories, Definition 9.1) is a filtered acyclic

complex.

Moreover, show that if α is a filtered quasi-isomorphism then α is also a usual
quasi-isomorphism.

Exercise 29.9.028G Let A be an abelian category. Assume A has enough injectives.

Let A be an object of Filf (A). Show there exists a complex I• of Filf (A), and a
morphism A[0]→ I• such that

(1) each Ip is filtered injective,
(2) Ip = 0 for p < 0, and
(3) A[0]→ I• is a filtered quasi-isomorphism.

Exercise 29.10.028H Let A be an abelian category. Assume A has enough injectives.

Let K• be a bounded below complex of objects of Filf (A). Show there exists a

filtered quasi-isomorphism α : K• → I• with I• a complex of Filf (A) having filtered
injective terms In, and bounded below. In fact, we may choose α such that each
αn is a strict monomorphism.

Exercise 29.11.028I Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

β}}
I•

http://stacks.math.columbia.edu/tag/028A
http://stacks.math.columbia.edu/tag/028B
http://stacks.math.columbia.edu/tag/028C
http://stacks.math.columbia.edu/tag/028D
http://stacks.math.columbia.edu/tag/028E
http://stacks.math.columbia.edu/tag/028F
http://stacks.math.columbia.edu/tag/028G
http://stacks.math.columbia.edu/tag/028H
http://stacks.math.columbia.edu/tag/028I


EXERCISES 26

of complexes of Filf (A). AssumeK•, L• and I• are bounded below and assume each
In is a filtered injective object. Also assume that α is a filtered quasi-isomorphism.

(1) There exists a map of complexes β making the diagram commute up to
homotopy.

(2) If α is a strict monomorphism in every degree then we can find a β which
makes the diagram commute.

Exercise 29.12.028J Let A be an abelian category. Let K•, K• be complexes of

Filf (A). Assume

(1) K• bounded below and filtered acyclic, and
(2) I• bounded below and consisting of filtered injective objects.

Then any morphism K• → I• is homotopic to zero.

Exercise 29.13.028K Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

βi}}
I•

of complexes of Filf (A). Assume K•, L• and I• bounded below and each In a
filtered injective object. Also assume α a filtered quasi-isomorphism. Any two
morphisms β1, β2 making the diagram commute up to homotopy are homotopic.

30. Regular functions

078V

Exercise 30.1.078W In this exercise we try to see what happens with regular functions
over non-algebraically closed fields. Let k be a field. Let Z ⊂ kn be a Zariski locally
closed subset, i.e., there exist ideals I ⊂ J ⊂ k[x1, . . . , xn] such that

Z = {a ∈ kn | f(a) = 0 ∀ f ∈ I, ∃ g ∈ J, g(a) 6= 0}.

A function ϕ : Z → k is said to be regular if for every z ∈ Z there exists a Zariski
open neighbourhood z ∈ U ⊂ Z and polynomials f, g ∈ k[x1, . . . , xn] such that
g(u) 6= 0 for all u ∈ U and such that ϕ(u) = f(u)/g(u) for all u ∈ U .

(1) If k = k̄ and Z = kn show that regular functions are given by polynomials.
(Only do this if you haven’t seen this argument before.)

(2) If k is finite show that (a) every function ϕ is regular, (b) the ring of regular
functions is finite dimensional over k. (If you like you can take Z = kn and
even n = 1.)

(3) If k = R give an example of a regular function on Z = R which is not given
by a polynomial.

(4) If k = Qp give an example of a regular function on Z = Qp which is not
given by a polynomial.

31. Sheaves

028L A morphism f : X → Y of a category C is an monomorphism if for every pair of
morphisms a, b : W → X we have f ◦ a = f ◦ b ⇒ a = b. A monomorphism in the
category of sets is an injective map of sets.

http://stacks.math.columbia.edu/tag/028J
http://stacks.math.columbia.edu/tag/028K
http://stacks.math.columbia.edu/tag/078W


EXERCISES 27

Exercise 31.1.078X Carefully prove that a map of sheaves of sets is an monomorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are injective.

A morphism f : X → Y of a category C is an isomorphism if there exists a morphism
g : Y → X such that f ◦ g = idY and g ◦ f = idX . An isomorphism in the category
of sets is a bijective map of sets.

Exercise 31.2.078Y Carefully prove that a map of sheaves of sets is an isomorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are bijective.

A morphism f : X → Y of a category C is an epimorphism if for every pair of
morphisms a, b : Y → Z we have a ◦ f = b ◦ f ⇒ a = b. An epimorphism in the
category of sets is a surjective map of sets.

Exercise 31.3.02EU Carefully prove that a map of sheaves of sets is an epimorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are surjective.

Exercise 31.4.02EV Let f : X → Y be a map of topological spaces. Prove pushforward

f∗ and pullback f−1 for sheaves of sets form an adjoint pair of functors.

Exercise 31.5.02EW Let j : U → X be an open immersion. Show that j−1 has a left
adjoint j! on the category of sheaves of sets. Characterize the stalks of j!(G). (Hint:
j! is called extension by zero when you do this for abelian sheaves... )

Exercise 31.6.028M Let X = R with the usual topology. Let OX = Z/2Z
X

. Let

i : Z = {0} → X be the inclusion and let OZ = Z/2Z
Z

. Prove the following (the

first three follow from the definitions but if you are not clear on the definitions you
should elucidate them):

(1) i∗OZ is a skyscraper sheaf.
(2) There is a canonical surjective map from Z/2Z

X
→ i∗Z/2Z

Z
. Denote the

kernel I ⊂ OX .
(3) I is an ideal sheaf of OX .
(4) The sheaf I on X cannot be locally generated by sections (as in Modules,

Definition 8.1.)

Exercise 31.7.028N Let X be a topological space. Let F be an abelian sheaf on X.
Show that F is the quotient of a (possibly very large) direct sum of sheaves all of
whose terms are of the form

j!(ZU )

where U ⊂ X is open and ZU denotes the constant sheaf with value Z on U .

Remark 31.8.02EX Let X be a topological space. In the category of abelian sheaves
the direct sum of a family of sheaves {Fi}i∈I is the sheaf associated to the presheaf
U 7→ ⊕Fi(U). Consequently the stalk of the direct sum at a point x is the direct
sum of the stalks of the Fi at x.

Exercise 31.9.078Z Let X be a topological space. Suppose we are given a collection
of abelian groups Ax indexed by x ∈ X. Show that the rule U 7→

∏
x∈U Ax with

obvious restriction mappings defines a sheaf G of abelian groups. Show, by an
example, that usually it is not the case that Gx = Ax for x ∈ X.
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Exercise 31.10.0790 Let X, Ax, G be as in Exercise 31.9. Let B be a basis for the
topology of X, see Topology, Definition 5.1. For U ∈ B let AU be a subgroup
AU ⊂ G(U) =

∏
x∈U Ax. Assume that for U ⊂ V with U, V ∈ B the restriction

maps AV into AU . For U ⊂ X open set

F(U) =

{
(sx)x∈U

∣∣∣∣ for every x in U there exists V ∈ B
x ∈ V ⊂ U such that (sy)y∈V ∈ AV

}
Show that F defines a sheaf of abelian groups on X. Show, by an example, that it
is usually not the case that F(U) = AU for U ∈ B.

32. Schemes

028O Let LRS be the category of locally ringed spaces. An affine scheme is an object in
LRS isomorphic in LRS to a pair of the form (Spec(A),OSpec(A)). A scheme is an
object (X,OX) of LRS such that every point x ∈ X has an open neighbourhood
U ⊂ X such that the pair (U,OX |U ) is an affine scheme.

Exercise 32.1.028P Find a 1-point locally ringed space which is not a scheme.

Exercise 32.2.028Q Suppose that X is a scheme whose underlying topological space
has 2 points. Show that X is an affine scheme.

Exercise 32.3.03KB Suppose that X is a scheme whose underlying topological space
is a finite discrete set. Show that X is an affine scheme.

Exercise 32.4.028R Show that there exists a non-affine scheme having three points.

Exercise 32.5.028S Suppose that X is a quasi-compact scheme. Show that X has a
closed point.

Remark 32.6.02EY When (X,OX) is a ringed space and U ⊂ X is an open subset
then (U,OX |U ) is a ringed space. Notation: OU = OX |U . There is a canonical
morphisms of ringed spaces

j : (U,OU ) −→ (X,OX).

If (X,OX) is a locally ringed space, so is (U,OU ) and j is a morphism of locally
ringed spaces. If (X,OX) is a scheme so is (U,OU ) and j is a morphism of schemes.
We say that (U,OU ) is an open subscheme of (X,OX) and that j is an open im-
mersion. More generally, any morphism j′ : (V,OV )→ (X,OX) that is isomorphic
to a morphism j : (U,OU )→ (X,OX) as above is called an open immersion.

Exercise 32.7.028T Give an example of an affine scheme (X,OX) and an open U ⊂ X
such that (U,OX |U) is not an affine scheme.

Exercise 32.8.028U Given an example of a pair of affine schemes (X,OX), (Y,OY ), an
open subscheme (U,OX |U ) of X and a morphism of schemes (U,OX |U )→ (Y,OY )
that does not extend to a morphism of schemes (X,OX)→ (Y,OY ).

Exercise 32.9.028V (This is pretty hard.) Given an example of a scheme X, and open
subscheme U ⊂ X and a closed subscheme Z ⊂ U such that Z does not extend to
a closed subscheme of X.

Exercise 32.10.028W Give an example of a scheme X, a field K, and a morphism of
ringed spaces Spec(K)→ X which is NOT a morphism of schemes.
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Exercise 32.11.028X Do all the exercises in [Har77, Chapter II], Sections 1 and 2...
Just kidding!

Definition 32.12.028Y A scheme X is called integral if X is nonempty and for every
nonempty affine open U ⊂ X the ring Γ(U,OX) = OX(U) is a domain.

Exercise 32.13.028Z Give an example of a morphism of integral schemes f : X → Y
such that the induced maps OY,f(x) → OX,x are surjective for all x ∈ X, but f is
not a closed immersion.

Exercise 32.14.0290 Give an example of a fibre product X ×S Y such that X and Y
are affine but X ×S Y is not.

Remark 32.15.02EZ It turns out this cannot happen with S separated. Do you know
why?

Exercise 32.16.0291 Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over Q such that Spec(C)×Spec(Q) V is not integral.

Exercise 32.17.0292 Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over a field k such that Spec(k′)×Spec(k) V is not reduced for
some finite field extension k ⊂ k′.

Remark 32.18.02F0 If your scheme is affine then dimension is the same as the Krull
dimension of the underlying ring. So you can use last semesters results to compute
dimension.

33. Morphisms

0293 An important question is, given a morphism π : X → S, whether the morphism
has a section or a rational section. Here are some example exercises.

Exercise 33.1.0294 Consider the morphism of schemes

π : X = Spec(C[x, t, 1/xt]) −→ S = Spec(C[t]).

(1) Show there does not exist a morphism σ : S → X such that π ◦ σ = idS .
(2) Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X

such that π ◦ σ = idU .

Exercise 33.2.0295 Consider the morphism of schemes

π : X = Spec(C[x, t]/(x2 + t)) −→ S = Spec(C[t]).

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

Exercise 33.3.0296 Let A,B,C ∈ C[t] be nonzero polynomials. Consider the mor-
phism of schemes

π : X = Spec(C[x, y, t]/(A+Bx2 + Cy2)) −→ S = Spec(C[t]).

Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU . (Hint: Symbolically, write x = X/Z, y = Y/Z for some
X,Y, Z ∈ C[t] of degree ≤ d for some d, and work out the condition that this solves
the equation. Then show, using dimension theory, that if d >> 0 you can find
nonzero X,Y, Z solving the equation.)
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Remark 33.4.02F1 Exercise 33.3 is a special case of “Tsen’s theorem”. Exercise 33.5
shows that the method is limited to low degree equations (conics when the base
and fibre have dimension 1).

Exercise 33.5.0297 Consider the morphism of schemes

π : X = Spec(C[x, y, t]/(1 + tx3 + t2y3)) −→ S = Spec(C[t])

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

Exercise 33.6.0298 Consider the schemes

X = Spec(C[{xi}8i=1, s, t]/(1+sx3
1+s2x3

2+tx3
3+stx3

4+s2tx3
5+t2x3

6+st2x3
7+s2t2x3

8))

and

S = Spec(C[s, t])

and the morphism of schemes

π : X −→ S

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

Exercise 33.7.0299 (For the number theorists.) Give an example of a closed subscheme

Z ⊂ Spec

(
Z[x,

1

x(x− 1)(2x− 1)
]

)
such that the morphism Z → Spec(Z) is finite and surjective.

Exercise 33.8.029A If you do not like number theory, you can try the variant where
you look at

Spec

(
Fp[t, x,

1

x(x− t)(tx− 1)
]

)
−→ Spec(Fp[t])

and you try to find a closed subscheme of the top scheme which maps finite surjec-
tively to the bottom one. (There is a theoretical reason for having a finite ground
field here; although it may not be necessary in this particular case.)

Remark 33.9.02F2 The interpretation of the results of Exercise 33.7 and 33.8 is that
given the morphism X → S all of whose fibres are nonempty, there exists a finite
surjective morphism S′ → S such that the base change XS′ → S′ does have a
section. This is not a general fact, but it holds if the base is the spectrum of a
dedekind ring with finite residue fields at closed points, and the morphism X → S
is flat with geometrically irreducible generic fibre. See Exercise 33.10 below for an
example where it doesn’t work.

Exercise 33.10.029B Prove there exist a f ∈ C[x, t] which is not divisible by t−α for
any α ∈ C such that there does not exist any Z ⊂ Spec(C[x, t, 1/f ]) which maps
finite surjectively to Spec(C[t]). (I think that f(x, t) = (xt − 2)(x − t + 3) works.
To show any candidate has the required property is not so easy I think.)
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34. Tangent Spaces

029C

Definition 34.1.029D For any ring R we denote R[ε] the ring of dual numbers. As an

R-module it is free with basis 1, ε. The ring structure comes from setting ε2 = 0.

Exercise 34.2.029E Let f : X → S be a morphism of schemes. Let x ∈ X be a point,
let s = f(x). Consider the solid commutative diagram

Spec(κ(x)) //

''

**Spec(κ(x)[ε]) //

��

X

��
Spec(κ(s)) // S

with the curved arrow being the canonical morphism of Spec(κ(x)) into X. If
κ(x) = κ(s) show that the set of dotted arrows which make the diagram commute
are in one to one correspondence with the set of linear maps

Homκ(x)(
mx

m2
x + msOX,x

, κ(x))

In other words: describe such a bijection. (This works more generally if κ(x) ⊃ κ(s)
is a separable algebraic extension.)

Definition 34.3.029F Let f : X → S be a morphism of schemes. Let x ∈ X. We
dub the set of dotted arrows of Exercise 34.2 the tangent space of X over S and we
denote it TX/S,x. An element of this space is called a tangent vector of X/S at x.

Exercise 34.4.029G For any field K prove that the diagram

Spec(K) //

��

Spec(K[ε1])

��
Spec(K[ε2) // Spec(K[ε1, ε2]/(ε1ε2))

is a pushout diagram in the category of schemes. (Here ε2i = 0 as before.)

Exercise 34.5.029H Let f : X → S be a morphism of schemes. Let x ∈ X. Define
addition of tangent vectors, using Exercise 34.4 and a suitable morphism

Spec(K[ε]) −→ Spec(K[ε1, ε2]/(ε1ε2)).

Similarly, define scalar multiplication of tangent vectors (this is easier). Show that
TX/S,x becomes a κ(x)-vector space with your constructions.

Exercise 34.6.029I Let k be a field. Consider the structure morphism f : X = A1
k →

Spec(k) = S.

(1) Let x ∈ X be a closed point. What is the dimension of TX/S,x?
(2) Let η ∈ X be the generic point. What is the dimension of TX/S,η?
(3) Consider now X as a scheme over Spec(Z). What are the dimensions of

TX/Z,x and TX/Z,η?

Remark 34.7.02F3 Exercise 34.6 explains why it is necessary to consider the tangent
space of X over S to get a good notion.
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Exercise 34.8.029J Consider the morphism of schemes

f : X = Spec(Fp(t)) −→ Spec(Fp(t
p)) = S

Compute the tangent space of X/S at the unique point of X. Isn’t that weird?
What do you think happens if you take the morphism of schemes corresponding to
Fp[t

p]→ Fp[t]?

Exercise 34.9.029K Let k be a field. Compute the tangent space of X/k at the point

x = (0, 0) where X = Spec(k[x, y]/(x2 − y3)).

Exercise 34.10.029L Let f : X → Y be a morphism of schemes over S. Let x ∈ X
be a point. Set y = f(x). Assume that the natural map κ(y) → κ(x) is bijective.
Show, using the definition, that f induces a natural linear map

df : TX/S,x −→ TY/S,y.

Match it with what happens on local rings via Exercise 34.2 in case κ(x) = κ(s).

Exercise 34.11.029M Let k be an algebraically closed field. Let

f : An
k −→ Am

k

(x1, . . . , xn) 7−→ (f1(xi), . . . , fm(xi))

be a morphism of schemes over k. This is given by m polynomials f1, . . . , fm in n
variables. Consider the matrix

A =

(
∂fj
∂xi

)
Let x ∈ An

k be a closed point. Set y = f(x). Show that the map on tangent spaces
TAn

k/k,x
→ TAm

k /k,y
is given by the value of the matrix A at the point x.

35. Quasi-coherent Sheaves

029N

Definition 35.1.029O Let X be a scheme. A sheaf F of OX -modules is quasi-coherent

if for every affine open Spec(R) = U ⊂ X the restriction F|U is of the form M̃ for
some R-module M .

It is enough to check this conditions on the members of an affine open covering of
X. See Schemes, Section 24 for more results.

Definition 35.2.029P Let X be a topological space. Let x, x′ ∈ X. We say x is a

specialization of x′ if and only if x ∈ {x′}.

Exercise 35.3.029Q Let X be a scheme. Let x, x′ ∈ X. Let F be a quasi-coherent
sheaf of OX -modules. Suppose that (a) x is a specialization of x′ and (b) Fx′ 6= 0.
Show that Fx 6= 0.

Exercise 35.4.029R Find an example of a scheme X, points x, x′ ∈ X, a sheaf of
OX -modules F such that (a) x is a specialization of x′ and (b) Fx′ 6= 0 and Fx = 0.

Definition 35.5.029S A scheme X is called locally Noetherian if and only if for ev-
ery point x ∈ X there exists an affine open Spec(R) = U ⊂ X such that R is
Noetherian. A scheme is Noetherian if it is locally Noetherian and quasi-compact.

If X is locally Noetherian then any affine open of X is the spectrum of a Noetherian
ring, see Properties, Lemma 5.2.
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Definition 35.6.029T LetX be a locally Noetherian scheme. Let F be a quasi-coherent
sheaf of OX -modules. We say F is coherent if for every point x ∈ X there exists

an affine open Spec(R) = U ⊂ X such that F|U is isomorphic to M̃ for some finite
R-module M .

Exercise 35.7.029U Let X = Spec(R) be an affine scheme.

(1) Let f ∈ R. Let G be a quasi-coherent sheaf of OD(f)-modules on the open
subscheme D(f). Show that G = F|D(f) for some quasi-coherent sheaf of
OX -modules F .

(2) Let I ⊂ R be an ideal. Let i : Z → X be the closed subscheme of X
corresponding to I. Let G be a quasi-coherent sheaf of OZ-modules on the
closed subscheme Z. Show that G = i∗F for some quasi-coherent sheaf of
OX -modules F . (Why is this silly?)

(3) Assume that R is Noetherian. Let f ∈ R. Let G be a coherent sheaf of
OD(f)-modules on the open subscheme D(f). Show that G = F|D(f) for
some coherent sheaf of OX -modules F .

Remark 35.8.029V If U → X is a quasi-compact immersion then any quasi-coherent
sheaf on U is the restriction of a quasi-coherent sheaf on X. If X is a Noetherian
scheme, and U ⊂ X is open, then any coherent sheaf on U is the restriction of a
coherent sheaf on X. Of course the exercise above is easier, and shouldn’t use these
general facts.

36. Proj and projective schemes

029W

Exercise 36.1.029X Give examples of graded rings S such that

(1) Proj(S) is affine and nonempty, and
(2) Proj(S) is integral, nonempty but not isomorphic to Pn

A for any n ≥ 0, any
ring A.

Exercise 36.2.029Y Give an example of a nonconstant morphism of schemes P1
C → P5

C

over Spec(C).

Exercise 36.3.029Z Give an example of an isomorphism of schemes

P1
C → Proj(C[X0, X1, X2]/(X2

0 +X2
1 +X2

2 ))

Exercise 36.4.02A0 Give an example of a morphism of schemes f : X → A1
C =

Spec(C[T ]) such that the (scheme theoretic) fibre Xt of f over t ∈ A1
C is (a)

isomorphic to P1
C when t is a closed point not equal to 0, and (b) not isomorphic

to P1
C when t = 0. We will call X0 the special fibre of the morphism. This can be

done in many, many ways. Try to give examples that satisfy (each of) the following
additional restraints (unless it isn’t possible):

(1) Can you do it with special fibre projective?
(2) Can you do it with special fibre irreducible and projective?
(3) Can you do it with special fibre integral and projective?
(4) Can you do it with special fibre smooth and projective?
(5) Can you do it with f a flat morphism? This just means that for every affine

open Spec(A) ⊂ X the induced ring map C[t] → A is flat, which in this
case means that any nonzero polynomial in t is a nonzerodivisor on A.
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(6) Can you do it with f a flat and projective morphism?
(7) Can you do it with f flat, projective and special fibre reduced?
(8) Can you do it with f flat, projective and special fibre irreducible?
(9) Can you do it with f flat, projective and special fibre integral?

What do you think happens when you replace P1
C with another variety over C?

(This can get very hard depending on which of the variants above you ask for.)

Exercise 36.5.02A1 Let n ≥ 1 be any positive integer. Give an example of a surjective
morphism X → Pn

C with X affine.

Exercise 36.6.02A2 Maps of Proj. Let R and S be graded rings. Suppose we have a
ring map

ψ : R→ S

and an integer e ≥ 1 such that ψ(Rd) ⊂ Sde for all d ≥ 0. (By our conventions this
is not a homomorphism of graded rings, unless e = 1.)

(1) For which elements p ∈ Proj(S) is there a well-defined corresponding point
in Proj(R)? In other words, find a suitable open U ⊂ Proj(S) such that ψ
defines a continuous map rψ : U → Proj(R).

(2) Give an example where U 6= Proj(S).
(3) Give an example where U = Proj(S).
(4) (Do not write this down.) Convince yourself that the continuous map U →

Proj(R) comes canonically with a map on sheaves so that rψ is a morphism
of schemes:

Proj(S) ⊃ U −→ Proj(R).

(5) What can you say about this map if R =
⊕

d≥0 Sde (as a graded ring with

Se, S2e, etc in degree 1, 2, etc) and ψ is the inclusion mapping?

Notation. Let R be a graded ring as above and let n ≥ 0 be an integer. Let
X = Proj(R). Then there is a unique quasi-coherent OX -module OX(n) on X such
that for every homogeneous element f ∈ R of positive degree we have OX |D+(f) is
the quasi-coherent sheaf associated to the R(f) = (Rf )0-module (Rf )n (=elements
homogeneous of degree n in Rf = R[1/f ]). See [Har77, page 116+]. Note that
there are natural maps

OX(n1)⊗OX
OX(n2) −→ OX(n1 + n2)

Exercise 36.7.02A3 Pathologies in Proj. Give examples of R as above such that

(1) OX(1) is not an invertible OX -module.
(2) OX(1) is invertible, but the natural map OX(1) ⊗OX

OX(1) → OX(2) is
NOT an isomorphism.

Exercise 36.8.02A4 Let S be a graded ring. Let X = Proj(S). Show that any finite
set of points of X is contained in a standard affine open.

Exercise 36.9.02A5 Let S be a graded ring. Let X = Proj(S). Let Z,Z ′ ⊂ X be two
closed subschemes. Let ϕ : Z → Z ′ be an isomorphism. Assume Z ∩ Z ′ = ∅. Show
that for any z ∈ Z there exists an affine open U ⊂ X such that z ∈ U , ϕ(z) ∈ U
and ϕ(Z ∩ U) = Z ′ ∩ U . (Hint: Use Exercise 36.8 and something akin to Schemes,
Lemma 11.5.)
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37. Morphisms from the projective line

0DJ0 In this section we study morphisms from P1 to projective schemes.

Exercise 37.1.0DJ1 Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polynomial
ring into its fraction field. Let X be a finite type scheme over k. Show that for any
morphism

ϕ : Spec(k(t)) −→ X

over k, there exist a nonzero f ∈ k[t] and a morphism ψ : Spec(k[t, 1/f ])→ X over
k such that ϕ is the composition

Spec(k(t)) −→ Spec(k[t, 1/f ]) −→ X

Exercise 37.2.0DJ2 Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polynomial
ring into its fraction field. Show that for any morphism

ϕ : Spec(k(t)) −→ Pn
k

over k, there exists a morphism ψ : Spec(k[t]) → Pn
k over k such that ϕ is the

composition
Spec(k(t)) −→ Spec(k[t]) −→ Pn

k

Hint: the image of ϕ is in a standard open D+(Ti) for some i; then show that you
can “clear denominators”.

Exercise 37.3.0DJ3 Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polynomial
ring into its fraction field. Let X be a projective scheme over k. Show that for any
morphism

ϕ : Spec(k(t)) −→ X

over k, there exists a morphism ψ : Spec(k[t]) → X over k such that ϕ is the
composition

Spec(k(t)) −→ Spec(k[t]) −→ X

Hint: use Exercise 37.2.

Exercise 37.4.0DJ4 Let k be a field. Let X be a projective scheme over k. Let K be

the function field of P1
k (see hint below). Show that for any morphism

ϕ : Spec(K) −→ X

over k, there exists a morphism ψ : P1
k → X over k such that ϕ is the composition

Spec(k(t)) −→ P1
k −→ X

Hint: use Exercise 37.3 for each of the two pieces of the affine open covering P1
k =

D+(T0) ∪D+(T1), use that D+(T0) is the spectrum of a polynomial ring and that
K is the fraction field of this polynomial ring.

38. Morphisms from surfaces to curves

02A6

Exercise 38.1.02A7 Let R be a ring. Let R → k be a map from R to a field. Let
n ≥ 0. Show that

MorSpec(R)(Spec(k),Pn
R) = (kn+1 \ {0})/k∗

where k∗ acts via scalar multiplication on kn+1. From now on we denote (x0 :
. . . : xn) the morphism Spec(k)→ Pn

k corresponding to the equivalence class of the
element (x0, . . . , xn) ∈ kn+1 \ {0}.
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Exercise 38.2.02A8 Let k be a field. Let Z ⊂ P2
k be an irreducible and reduced

closed subscheme. Show that either (a) Z is a closed point, or (b) there exists an
homogeneous irreducible F ∈ k[X0, X1, X2] of degree > 0 such that Z = V+(F ), or
(c) Z = P2

k. (Hint: Look on a standard affine open.)

Exercise 38.3.02A9 Let k be a field. Let Z1, Z2 ⊂ P2
k be irreducible closed subschemes

of the form V+(F ) for some homogeneous irreducible Fi ∈ k[X0, X1, X2] of degree
> 0. Show that Z1 ∩Z2 is not empty. (Hint: Use dimension theory to estimate the
dimension of the local ring of k[X0, X1, X2]/(F1, F2) at 0.)

Exercise 38.4.02AA Show there does not exist a nonconstant morphism of schemes

P2
C → P1

C over Spec(C). Here a constant morphism is one whose image is a single
point. (Hint: If the morphism is not constant consider the fibres over 0 and ∞ and
argue that they have to meet to get a contradiction.)

Exercise 38.5.02AB Let k be a field. Suppose that X ⊂ P3
k is a closed subscheme

given by a single homogeneous equation F ∈ k[X0, X1, X2, X3]. In other words,

X = Proj(k[X0, X1, X2, X3]/(F )) ⊂ P3
k

as explained in the course. Assume that

F = X0G+X1H

for some homogeneous polynomials G,H ∈ k[X0, X1, X2, X3] of positive degree.
Show that if X0, X1, G,H have no common zeros then there exists a nonconstant
morphism

X −→ P1
k

of schemes over Spec(k) which on field points (see Exercise 38.1) looks like (x0 :
x1 : x2 : x3) 7→ (x0 : x1) whenever x0 or x1 is not zero.

39. Invertible sheaves

02AC

Definition 39.1.02AD Let X be a locally ringed space. An invertible OX-module on
X is a sheaf of OX -modules L such that every point has an open neighbourhood
U ⊂ X such that L|U is isomorphic to OU as OU -module. We say that L is trivial
if it is isomorphic to OX as a OX -module.

Exercise 39.2.02AE General facts.

(1) Show that an invertible OX -module on a scheme X is quasi-coherent.
(2) Suppose X → Y is a morphism of locally ringed spaces, and L an invertible
OY -module. Show that f∗L is an invertible OX module.

Exercise 39.3.02AF Algebra.

(1) Show that an invertible OX -module on an affine scheme Spec(A) corre-
sponds to an A-module M which is (i) finite, (ii) projective, (iii) locally
free of rank 1, and hence (iv) flat, and (v) finitely presented. (Feel free to
quote things from last semesters course; or from algebra books.)

(2) Suppose that A is a domain and that M is a module as in (a). Show that M
is isomorphic as an A-module to an ideal I ⊂ A such that IAp is principal
for every prime p.
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Definition 39.4.02AG Let R be a ring. An invertible module M is an R-module M

such that M̃ is an invertible sheaf on the spectrum of R. We say M is trivial if
M ∼= R as an R-module.

In other words, M is invertible if and only if it satisfies all of the following conditions:
it is flat, of finite presentation, projective, and locally free of rank 1. (Of course it
suffices for it to be locally free of rank 1).

Exercise 39.5.02AH Simple examples.

(1)02AI Let k be a field. Let A = k[x]. Show that X = Spec(A) has only trivial in-
vertible OX -modules. In other words, show that every invertible A-module
is free of rank 1.

(2)02AJ Let A be the ring

A = {f ∈ k[x] | f(0) = f(1)}.
Show there exists a nontrivial invertible A-module, unless k = F2. (Hint:
Think about Spec(A) as identifying 0 and 1 in A1

k = Spec(k[x]).)
(3)02AK Same question as in (2) for the ring A = k[x2, x3] ⊂ k[x] (except now

k = F2 works as well).

Exercise 39.6.02AL Higher dimensions.

(1) Prove that every invertible sheaf on two dimensional affine space is trivial.
More precisely, let A2

k = Spec(k[x, y]) where k is a field. Show that every
invertible sheaf on A2

k is trivial. (Hint: One way to do this is to consider
the corresponding module M , to look at M ⊗k[x,y] k(x)[y], and then use
Exercise 39.5 (1) to find a generator for this; then you still have to think.
Another way to is to use Exercise 39.3 and use what we know about ideals
of the polynomial ring: primes of height one are generated by an irreducible
polynomial; then you still have to think.)

(2) Prove that every invertible sheaf on any open subscheme of two dimensional
affine space is trivial. More precisely, let U ⊂ A2

k be an open subscheme
where k is a field. Show that every invertible sheaf on U is trivial. Hint:
Show that every invertible sheaf on U extends to one on A2

k. Not easy; but
you can find it in [Har77].

(3) Find an example of a nontrivial invertible sheaf on a punctured cone over a
field. More precisely, let k be a field and let C = Spec(k[x, y, z]/(xy− z2)).
Let U = C \ {(x, y, z)}. Find a nontrivial invertible sheaf on U . Hint: It
may be easier to compute the group of isomorphism classes of invertible
sheaves on U than to just find one. Note that U is covered by the opens
Spec(k[x, y, z, 1/x]/(xy− z2)) and Spec(k[x, y, z, 1/y]/(xy− z2)) which are
“easy” to deal with.

Definition 39.7.02AM Let X be a locally ringed space. The Picard group of X is the
set Pic(X) of isomorphism classes of invertible OX -modules with addition given
by tensor product. See Modules, Definition 22.9. For a ring R we set Pic(R) =
Pic(Spec(R)).

Exercise 39.8.02AN Let R be a ring.

(1) Show that if R is a Noetherian normal domain, then Pic(R) = Pic(R[t]).
[Hint: There is a map R[t] → R, t 7→ 0 which is a left inverse to the map
R→ R[t]. Hence it suffices to show that any invertible R[t]-module M such
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that M/tM ∼= R is free of rank 1. Let K = f.f.(R). Pick a trivialization
K[t] → M ⊗R[t] K[t] which is possible by Exercise 39.5 (1). Adjust it so
it agrees with the trivialization of M/tM above. Show that it is in fact a
trivialization of M over R[t] (this is where normality comes in).]

(2) Let k be a field. Show that Pic(k[x2, x3, t]) 6= Pic(k[x2, x3]).

40. Čech Cohomology

02AO

Exercise 40.1.02F4 Čech cohomology. Here k is a field.

(1) Let X be a scheme with an open covering U : X = U1 ∪ U2, with U1 =
Spec(k[x]), U2 = Spec(k[y]) with U1 ∩ U2 = Spec(k[z, 1/z]) and with open
immersions U1 ∩ U2 → U1 resp. U1 ∩ U2 → U2 determined by x 7→ z resp.
y 7→ z (and I really mean this). (We’ve seen in the lectures that such an X
exists; it is the affine line with zero doubled.) Compute Ȟ1(U ,O); eg. give
a basis for it as a k-vectorspace.

(2) For each element in Ȟ1(U ,O) construct an exact sequence of sheaves of
OX -modules

0→ OX → E → OX → 0

such that the boundary δ(1) ∈ Ȟ1(U ,O) equals the given element. (Part
of the problem is to make sense of this. See also below. It is also OK to
show abstractly such a thing has to exist.)

Definition 40.2.02AP (Definition of delta.) Suppose that

0→ F1 → F2 → F3 → 0

is a short exact sequence of abelian sheaves on any topological space X. The
boundary map δ : H0(X,F3) → Ȟ1(X,F1) is defined as follows. Take an element
τ ∈ H0(X,F3). Choose an open covering U : X =

⋃
i∈I Ui such that for each i

there exists a section τ̃i ∈ F2 lifting the restriction of τ to Ui. Then consider the
assignment

(i0, i1) 7−→ τ̃i0 |Ui0i1
− τ̃i1 |Ui0i1

.

This is clearly a 1-coboundary in the Čech complex Č∗(U ,F2). But we observe that
(thinking of F1 as a subsheaf of F2) the RHS always is a section of F1 over Ui0i1 .
Hence we see that the assignment defines a 1-cochain in the complex Č∗(U ,F2).
The cohomology class of this 1-cochain is by definition δ(τ).

41. Cohomology

0D8P

Exercise 41.1.0D8Q Let X = R with the usual Euclidian topology. Using only formal
properties of cohomology (functoriality and the long exact cohomology sequence)
show that there exists a sheaf F on X with nonzero H1(X,F).

Exercise 41.2.0D8R Let X = U ∪V be a topological space written as the union of two
opens. Then we have a long exact Mayer-Vietoris sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

What property of injective sheaves is essential for the construction of the Mayer-
Vietoris long exact sequence? Why does it hold?
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Exercise 41.3.0D8S Let X be a topological space.

(1) Show that Hi(X,F) is zero for i > 0 if X has 2 or fewer points.
(2) What if X has 3 points?

Exercise 41.4.0D8T Let X be the spectrum of a local ring. Show that Hi(X,F) is
zero for i > 0 and any sheaf of abelian groups F .

Exercise 41.5.0D8U Let f : X → Y be an affine morphism of schemes. Prove that

Hi(X,F) = Hi(Y, f∗F) for any quasi-coherent OX -module F . Feel free to impose
some further conditions on X and Y and use the agreement of Čech cohomology
with cohomology for quasi-coherent sheaves and affine open coverings of separated
schemes.

Exercise 41.6.0D8V Let A be a ring. Let Pn
A = Proj(A[T0, . . . , Tn]) be projective

space over A. Let An+1
A = Spec(A[T0, . . . , Tn]) and let

U =
⋃

i=0,...,n
D(Ti) ⊂ An+1

A

be the complement of the image of the closed immersion 0 : Spec(A) → An+1
A .

Construct an affine surjective morphism

f : U −→ Pn
A

and prove that f∗OU =
⊕

d∈ZOPn
A

(d). More generally, show that for a graded
A[T0, . . . , Tn]-module M one has

f∗(M̃ |U ) =
⊕

d∈Z
M̃(d)

where on the left hand side we have the quasi-coherent sheaf M̃ associated to M

on An+1
A and on the right we have the quasi-coherent sheaves M̃(d) associated to

the graded module M(d).

Exercise 41.7.0D8W Let A be a ring and let Pn
A = Proj(A[T0, . . . , Tn]) be projective

space over A. Carefully compute the cohomology of the Serre twists OPn
A

(d) of

the structure sheaf on Pn
A. Feel free to use Čech cohomology and the agreement

of Čech cohomology with cohomology for quasi-coherent sheaves and affine open
coverings of separated schemes.

Exercise 41.8.0D8X Let A be a ring and let Pn
A = Proj(A[T0, . . . , Tn]) be projective

space over A. Let F ∈ A[T0, . . . , Tn] be homogeneous of degree d. Let X ⊂ Pn
A be

the closed subscheme corresponding to the graded ideal (F ) of A[T0, . . . , Tn]. What
can you say about Hi(X,OX)?

Exercise 41.9.0D8Y LetR be a ring such that for any left exact functor F : ModR → Ab

we have RiF = 0 for i > 0. Show that R is a finite product of fields.

42. More cohomology

0DAI

Exercise 42.1.0DAJ Let k be a field. Let X ⊂ Pn
k be the “coordinate cross”. Namely,

let X be defined by the homogeneous equations

TiTj = 0 for i > j > 0
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where as usual we write Pn
k = Proj(k[T0, . . . , Tn]). In other words, X is the closed

subscheme corresponding to the quotient k[T0, . . . , Tn]/(TiTj ; i > j > 0) of the

polynomial ring. Compute Hn(X,OX) for all n. Hint: use Čech cohomology.

Exercise 42.2.0DAK Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated ideal
of A. Let U ⊂ Spec(A) be the complement of V (I). For any A-module M write
down a complex of A-modules (in terms of A, f1, . . . , ft, M) whose cohomology

groups give Hn(U, M̃).

Exercise 42.3.0DAL Let k be a field. Let U ⊂ Ad
k be the complement of the closed

point 0 of Ad
k. Compute Hn(U,OU ) for all n.

Exercise 42.4.0DAM Let k be a field. Find explicitly a scheme X projective over k of

dimension 1 with H0(X,OX) = k and dimkH
1(X,OX) = 100.

Exercise 42.5.0DAN Let f : X → Y be a finite locally free morphism of degree 2.
Assume that X and Y are integral schemes and that 2 is invertible in the structure
sheaf of Y , i.e., 2 ∈ Γ(Y,OY ) is invertible. Show that the OY -module map

f ] : OY −→ f∗OX
has a left inverse, i.e., there is an OY -module map τ : f∗OX → OY with τ ◦f ] = id.
Conclude that Hn(Y,OY )→ Hn(X,OX) is injective2.

Exercise 42.6.0DAP Let X be a scheme (or a locally ringed space). The rule U 7→
OX(U)∗ defines a sheaf of groups denoted O∗X . Briefly explain why the Picard
group of X (Definition 39.7) is equal to H1(X,O∗X).

Exercise 42.7.0DAQ Give an example of an affine scheme X with nontrivial Pic(X).

Conclude using Exercise 42.6 that H1(X,−) is not the zero functor for any such
X.

Exercise 42.8.0DAR Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated
ideal of A. Let U ⊂ Spec(A) be the complement of V (I). Given a quasi-coherent
OSpec(A)-module F and ξ ∈ Hp(U,F) with p > 0, show that there exists n > 0
such that fni ξ = 0 for i = 1, . . . , t. Hint: One possible way to proceed is to use the
complex you found in Exercise 42.2.

Exercise 42.9.0DAS Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated ideal
of A. Let U ⊂ Spec(A) be the complement of V (I). Let M be an A-module whose
I-torsion is zero, i.e., 0 = Ker((f1, . . . , ft) : M → M⊕t). Show that there is a
canonical isomorphism

H0(U, M̃) = colim HomA(In,M).

Warning: this is not trivial.

Exercise 42.10.0DAT Let A be a Noetherian ring. Let I be an ideal of A. Let M be
an A-module. Let M [I∞] be the set of I-power torsion elements defined by

M [I∞] = {x ∈M | there exists an n ≥ 1 such that Inx = 0}
Set M ′ = M/M [I∞]. Then the I-power torsion of M ′ is zero. Show that

colim HomA(In,M) = colim HomA(In,M ′).

2There does exist a finite locally free morphism X → Y between integral schemes of degree 2
where the map H1(Y,OY )→ H1(X,OX) is not injective.
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Warning: this is not trivial. Hints: (1) try to reduce to M finite, (2) show any
element of Ext1

A(In, N) maps to zero in Ext1
A(In+m, N) for some m > 0 if N =

M [I∞] and M finite, (3) show the same thing as in (2) for HomA(In, N), (3)
consider the long exact sequence

0→ HomA(In,M [I∞])→ HomA(In,M)→ HomA(In,M ′)→ Ext1
A(In,M [I∞])

for M finite and compare with the sequence for In+m to conclude.

43. Cohomology revisited

0DB3

Exercise 43.1.0DB4 Make an example of a field k, a curve X over k, an invertible

OX -module L and a cohomology class ξ ∈ H1(X,L) with the following property:
for every surjective finite morphism π : Y → X of schemes the element ξ pulls
back to a nonzero element of H1(Y, π∗L). Hint: construct X, k, L such that there
is a short exact sequence 0 → L → OX → i∗OZ → 0 where Z ⊂ X is a closed
subscheme consisting of more than 1 closed point. Then look at what happens
when you pullback.

Exercise 43.2.0DB5 Let k be an algebraically closed field. Let X be a projective
1-dimensional scheme. Suppose that X contains a cycle of curves, i.e., suppose
there exist an n ≥ 2 and pairwise distinct 1-dimensional integral closed subschemes
C1, . . . , Cn and pairwise distinct closed points x1, . . . , xn ∈ X such that xn ∈
Cn ∩C1 and xi ∈ Ci ∩Ci+1 for i = 1, . . . , n− 1. Prove that H1(X,OX) is nonzero.
Hint: Let F be the image of the map OX →

⊕
OCi

, and show H1(X,F) is
nonzero using that κ(xi) = k and H0(Ci,OCi

) = k. Also use that H2(X,−) = 0
by Grothendieck’s theorem.

Exercise 43.3.0DB6 Let X be a projective surface over an algebraically closed field

k. Prove there exists a proper closed subscheme Z ⊂ X such that H1(Z,OZ) is
nonzero. Hint: Use Exercise 43.2.

Exercise 43.4.0DB7 Let X be a projective surface over an algebraically closed field k.
Show that for every n ≥ 0 there exists a proper closed subscheme Z ⊂ X such that
dimkH

1(Z,OZ) > n. Only explain how to do this by modifying the arguments in
Exercise 43.3 and 43.2; don’t give all the details.

Exercise 43.5.0DB8 Let X be a projective surface over an algebraically closed field k.

Prove there exists a coherent OX -module F such that H2(X,F) is nonzero. Hint:
Use the result of Exercise 43.4 and a cleverly chosen exact sequence.

Exercise 43.6.0DB9 Let X and Y be schemes over a field k (feel free to assume X and
Y are nice, for example qcqs or projective over k). Set X × Y = X ×Spec(k) Y with
projections p : X × Y → X and q : X × Y → Y . For a quasi-coherent OX -module
F and a quasi-coherent OY -module G prove that

Hn(X × Y, p∗F ⊗OX×Y
q∗G) =

⊕
a+b=n

Ha(X,F)⊗k Hb(Y,G)

or just show that this holds when one takes dimensions. Extra points for “clean”
solutions.

http://stacks.math.columbia.edu/tag/0DB4
http://stacks.math.columbia.edu/tag/0DB5
http://stacks.math.columbia.edu/tag/0DB6
http://stacks.math.columbia.edu/tag/0DB7
http://stacks.math.columbia.edu/tag/0DB8
http://stacks.math.columbia.edu/tag/0DB9
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Exercise 43.7.0DBA Let k be a field. Let X = P|1×P1 be the product of the projective

line over k with itself with projections p : X → P1
k and q : X → P1

k. Let

O(a, b) = p∗OP1
k
(a)⊗OX

q∗OP1
k
(b)

Compute the dimensions of Hi(X,O(a, b)) for all i, a, b. Hint: Use Exercise 43.6.

44. Cohomology and Hilbert polynomials

0DCD

Situation 44.1.0DCE Let k be a field. Let X = Pn
k be n-dimensional projective space.

Let F be a coherent OX -module. Recall that

χ(X,F) =
∑n

i=0
(−1)i dimkH

i(X,F)

Recall that the Hilbert polynomial of F is the function

t 7−→ χ(X,F(t))

We also recall that F(t) = F ⊗OX
OX(t) where OX(t) is the tth twist of the

structure sheaf as in Constructions, Definition 10.1. In Varieties, Subsection 33.12
we have proved the Hilbert polynomial is a polynomial in t.

Exercise 44.2.0DCF In Situation 44.1.

(1) If P (t) is the Hilbert polynomial of F , what is the Hilbert polynomial of
F(−13).

(2) If Pi is the Hilbert polynomial of Fi, what is the Hilbert polynomial of
F1 ⊕F2.

(3) If Pi is the Hilbert polynomial of Fi and F is the kernel of a surjective map
F1 → F2, what is the Hilbert polynomial of F?

Exercise 44.3.0DCG In Situation 44.1 assume n ≥ 1. Find a coherent sheaf whose
Hilbert polynomial is t− 101.

Exercise 44.4.0DCH In Situation 44.1 assume n ≥ 2. Find a coherent sheaf whose

Hilbert polynomial is t2/2+ t/2−1. (This is a bit tricky; it suffices if you just show
there is such a coherent sheaf.)

Exercise 44.5.0DCI In Situation 44.1 assume n ≥ 2 and k algebraically closed. Let
C ⊂ X be an integral closed subscheme of dimension 1. In other words, C is a
projective curve. Let dt+ e be the Hilbert polynomial of OC viewed as a coherent
sheaf on X.

(1) Give an upper bound on e. (Hints: Use that OC(t) only has cohomology
in degrees 0 and 1 and study H0(C,OC).)

(2) Pick a global section s of OX(1) which intersects C transversally, i.e., such
that there are pairwise distinct closed points c1, . . . , cr ∈ C and a short
exact sequence

0→ OC
s−→ OC(1)→

⊕
i=1,...,r

kci → 0

where kci is the skyscraper sheaf with value k in ci. (Such an s exists;
please just use this.) Show that r = d. (Hint: twist the sequence and see
what you get.)

(3) Twisting the short exact sequence gives a k-linear map ϕt : Γ(C,OC(t))→⊕
i=1,...,d k for any t. Show that if this map is surjective for t ≥ d− 1.

http://stacks.math.columbia.edu/tag/0DBA
http://stacks.math.columbia.edu/tag/0DCE
http://stacks.math.columbia.edu/tag/0DCF
http://stacks.math.columbia.edu/tag/0DCG
http://stacks.math.columbia.edu/tag/0DCH
http://stacks.math.columbia.edu/tag/0DCI
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(4) Give a lower bound on e in terms of d. (Hint: show that H1(C,OC(d−2)) =
0 using the result of (3) and use vanishing.)

Exercise 44.6.0DCJ In Situation 44.1 assume n = 2. Let s1, s2, s3 ∈ Γ(X,OX(2)) be
three quadric equations. Consider the coherent sheaf

F = Coker
(
OX(−2)⊕3 s1,s2,s3−−−−−→ OX

)
List the possible Hilbert polynomials of such F . (Try to visualize intersections of
quadrics in the projective plane.)

45. Global Exts

0DD0

Exercise 45.1.0DD1 Let k be a field. Let X = P3
k. Let L ⊂ X and P ⊂ X be a line

and a plane, viewed as closed subschemes cut out by 1, resp., 2 linear equations.
Compute the dimensions of

ExtiX(OL,OP )

for all i. Make sure to do both the case where L is contained in P and the case
where L is not contained in P .

Exercise 45.2.0DD2 Let k be a field. Let X = Pn
k . Let Z ⊂ X be a closed k-rational

point viewed as a closed subscheme. For example the point with homogeneous
coordinates (1 : 0 : . . . : 0). Compute the dimensions of

ExtiX(OZ ,OZ)

for all i.

Exercise 45.3.0DD3 Let X be a ringed space. Define cup-product maps

ExtiX(G,H)× ExtjX(F ,G) −→ Exti+jX (F ,H)

for OX -modules F ,G,H. (Hint: this is a super general thing.)

Exercise 45.4.0DD4 Let X be a ringed space. Let E be a finite locally free OX -module
with dual E∨ = HomOX

(E ,OX). Prove the following statements

(1) Ext iOX
(F ⊗OX

E ,G) = Ext iOX
(F , E∨ ⊗OX

G) = Ext iOX
(F ,G)⊗OX

E∨, and

(2) ExtiX(F ⊗OX
E ,G) = ExtiX(F , E∨ ⊗OX

G).

Here F and G are OX -modules. Conclude that

ExtiX(E ,G) = Hi(X, E∨ ⊗OX
G)

Exercise 45.5.0DD5 Let X be a ringed space. Let E be a finite locally free OX -module.
Construct a trace map

ExtiX(E , E)→ Hi(X,OX)

for all i. Generalize to a trace map

ExtiX(E , E ⊗OX
F)→ Hi(X,F)

for any OX -module F .

http://stacks.math.columbia.edu/tag/0DCJ
http://stacks.math.columbia.edu/tag/0DD1
http://stacks.math.columbia.edu/tag/0DD2
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http://stacks.math.columbia.edu/tag/0DD4
http://stacks.math.columbia.edu/tag/0DD5
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Exercise 45.6.0DD6 Let k be a field. Let X = Pd
k. Set ωX/k = OX(−d − 1). Prove

that for finite locally free modules E , F the cup product on Ext combined with the
trace map on Ext

ExtiX(E ,F⊗OX
ωX/k)×Extd−iX (F , E)→ ExtdX(F ,F⊗OX

ωX/k)→ Hd(X,ωX/k) = k

produces a nondegenerate pairing. Hint: you can either reprove duality in this
setting or you can reduce to cohomology of sheaves and apply the Serre duality
theorem as proved in the lectures.

46. Divisors

02AQ We collect all relevant definitions here in one spot for convenience.

Definition 46.1.02AR Throughout, let S be any scheme and let X be a Noetherian,
integral scheme.

(1) A Weil divisor on X is a formal linear combination Σni[Zi] of prime divisors
Zi with integer coefficients.

(2) A prime divisor is a closed subscheme Z ⊂ X, which is integral with generic
point ξ ∈ Z such that OX,ξ has dimension 1. We will use the notation
OX,Z = OX,ξ when ξ ∈ Z ⊂ X is as above. Note that OX,Z ⊂ K(X) is a
subring of the function field of X.

(3) The Weil divisor associated to a rational function f ∈ K(X)∗ is the sum
ΣvZ(f)[Z]. Here vZ(f) is defined as follows
(a) If f ∈ O∗X,Z then vZ(f) = 0.

(b) If f ∈ OX,Z then

vZ(f) = lengthOX,Z
(OX,Z/(f)).

(c) If f = a
b with a, b ∈ OX,Z then

vZ(f) = lengthOX,Z
(OX,Z/(a))− lengthOX,Z

(OX,Z/(b)).

(4) An effective Cartier divisor on a scheme S is a closed subscheme D ⊂ S such
that every point d ∈ D has an affine open neighbourhood Spec(A) = U ⊂ S
in S so that D ∩ U = Spec(A/(f)) with f ∈ A a nonzerodivisor.

(5) The Weil divisor [D] associated to an effective Cartier divisor D ⊂ X of
our Noetherian integral scheme X is defined as the sum ΣvZ(D)[Z] where
vZ(D) is defined as follows
(a) If the generic point ξ of Z is not in D then vZ(D) = 0.
(b) If the generic point ξ of Z is in D then

vZ(D) = lengthOX,Z
(OX,Z/(f))

where f ∈ OX,Z = OX,ξ is the nonzerodivisor which defines D in an
affine neighbourhood of ξ (as in (4) above).

(6) Let S be a scheme. The sheaf of total quotient rings KS is the sheaf of OS-
algebras which is the sheafification of the pre-sheaf K′ defined as follows.
For U ⊂ S open we set K′(U) = S−1

U OS(U) where SU ⊂ OS(U) is the
multiplicative subset consisting of sections f ∈ OS(U) such that the germ
of f in OS,u is a nonzerodivisor for every u ∈ U . In particular the elements
of SU are all nonzerodivisors. Thus OS is a subsheaf of KS , and we get a
short exact sequence

0→ O∗S → K∗S → K∗S/O∗S → 0.

http://stacks.math.columbia.edu/tag/0DD6
http://stacks.math.columbia.edu/tag/02AR
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(7) A Cartier divisor on a scheme S is a global section of the quotient sheaf
K∗S/O∗S .

(8) The Weil divisor associated to a Cartier divisor τ ∈ Γ(X,K∗X/O∗X) over our
Noetherian integral scheme X is the sum ΣvZ(τ)[Z] where vZ(τ) is defined
as by the following recipe
(a) If the germ of τ at the generic point ξ of Z is zero – in other words

the image of τ in the stalk (K∗/O∗)ξ is “zero” – then vZ(τ) = 0.
(b) Find an affine open neighbourhood Spec(A) = U ⊂ X so that τ |U is

the image of a section f ∈ K(U) and moreover f = a/b with a, b ∈ A.
Then we set

vZ(f) = lengthOX,Z
(OX,Z/(a))− lengthOX,Z

(OX,Z/(b)).

Remarks 46.2.02F5 Here are some trivial remarks.

(1) On a Noetherian integral scheme X the sheaf KX is constant with value
the function field K(X).

(2) To make sense out of the definitions above one needs to show that

lengthO(O/(ab)) = lengthO(O/(a)) + lengthO(O/(b))

for any pair (a, b) of nonzero elements of a Noetherian 1-dimensional local
domain O. This will be done in the lectures.

Exercise 46.3.02F6 (On any scheme.) Describe how to assign a Cartier divisor to an
effective Cartier divisor.

Exercise 46.4.02F7 (On an integral scheme.) Describe how to assign a Cartier divisor
D to a rational function f such that the Weil divisor associated to D and to f
agree. (This is silly.)

Exercise 46.5.02F8 Give an example of a Weil divisor on a variety which is not the
Weil divisor associated to any Cartier divisor.

Exercise 46.6.02F9 Give an example of a Weil divisor D on a variety which is not the
Weil divisor associated to any Cartier divisor but such that nD is the Weil divisor
associated to a Cartier divisor for some n > 1.

Exercise 46.7.02FA Give an example of a Weil divisor D on a variety which is not the
Weil divisor associated to any Cartier divisor and such that nD is NOT the Weil
divisor associated to a Cartier divisor for any n > 1. (Hint: Consider a cone, for
example X : xy − zw = 0 in A4

k. Try to show that D = [x = 0, z = 0] works.)

Exercise 46.8.02FB On a separated scheme X of finite type over a field: Give an
example of a Cartier divisor which is not the difference of two effective Cartier
divisors. Hint: Find some X which does not have any nonempty effective Cartier
Cartier divisors for example the scheme constructed in [Har77, III Exercise 5.9].
There is even an example with X a variety – namely the variety of Exercise 46.9.

Exercise 46.9.02AS Example of a nonprojective proper variety. Let k be a field. Let

L ⊂ P3
k be a line and let C ⊂ P3

k be a nonsingular conic. Assume that C ∩ L = ∅.
Choose an isomorphism ϕ : L→ C. Let X be the k-variety obtained by glueing C
to L via ϕ. In other words there is a surjective proper birational morphism

π : P3
k −→ X

http://stacks.math.columbia.edu/tag/02F5
http://stacks.math.columbia.edu/tag/02F6
http://stacks.math.columbia.edu/tag/02F7
http://stacks.math.columbia.edu/tag/02F8
http://stacks.math.columbia.edu/tag/02F9
http://stacks.math.columbia.edu/tag/02FA
http://stacks.math.columbia.edu/tag/02FB
http://stacks.math.columbia.edu/tag/02AS
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and an open U ⊂ X such that π : π−1(U) → U is an isomorphism, π−1(U) =
P3
k \ (L ∪ C) and such that π|L = π|C ◦ ϕ. (These conditions do not yet uniquely

define X. In order to do this you need to specify the structure sheaf of X along
points of Z = X \ U .) Show X exists, is a proper variety, but is not projective.
(Hint: For existence use the result of Exercise 36.9. For non-projectivity use that
Pic(P3

k) = Z to show that X cannot have an ample invertible sheaf.)

47. Differentials

02AT Definitions and results. Kähler differentials.

(1) Let R→ A be a ring map. The module of Kähler differentials of A over R
is denoted ΩA/R. It is generated by the elements da, a ∈ A subject to the
relations:

d(a1 + a2) = da1 + da2, d(a1a2) = a1da2 + a2da1, dr = 0

The canonical universal R-derivation d : A→ ΩA/R maps a 7→ da.
(2) Consider the short exact sequence

0→ I → A⊗R A→ A→ 0

which defines the ideal I. There is a canonical derivation d : A → I/I2

which maps a to the class of a⊗ 1− 1⊗ a. This is another presentation of
the module of derivations of A over R, in other words

(I/I2,d) ∼= (ΩA/R,d).

(3) For multiplicative subsets SR ⊂ R and SA ⊂ A such that SR maps into SA
we have

ΩS−1
A A/S−1

R R = S−1
A ΩA/R.

(4) If A is a finitely presented R-algebra then ΩA/R is a finitely presented
A-module. Hence in this case the fitting ideals of ΩA/R are defined.

(5) Let f : X → S be a morphism of schemes. There is a quasi-coherent sheaf
of OX -modules ΩX/S and a OS-linear derivation

d : OX −→ ΩX/S

such that for any affine opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with
f(U) ⊂ V we have

Γ(Spec(A),ΩX/S) = ΩA/R

compatibly with d.

Exercise 47.1.02FC Let k[ε] be the ring of dual numbers over the field k, i.e., ε2 = 0.

(1) Consider the ring map

R = k[ε]→ A = k[x, ε]/(εx)

Show that the Fitting ideals of ΩA/R are (starting with the zeroth Fitting
ideal)

(ε), A,A, . . .

http://stacks.math.columbia.edu/tag/02FC
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(2) Consider the map R = k[t]→ A = k[x, y, t]/(x(y−t)(y−1), x(x−t)). Show
that the Fitting ideals of of ΩA/R in A are (assume characteristic k is zero
for simplicity)

x(2x− t)(2y − t− 1)A, (x, y, t) ∩ (x, y − 1, t), A, A, . . .

So the 0-the Fitting ideal is cut out by a single element of A, the 1st Fitting
ideal defines two closed points of Spec(A), and the others are all trivial.

(3) Consider the map R = k[t]→ A = k[x, y, t]/(xy−tn). Compute the Fitting
ideals of ΩA/R.

Remark 47.2.02FD The kth Fitting ideal of ΩX/S is commonly used to define the
singular scheme of the morphism X → S when X has relative dimension k over
S. But as part (a) shows, you have to be careful doing this when your family does
not have “constant” fibre dimension, e.g., when it is not flat. As part (b) shows,
flatness doesn’t guarantee it works either (and yes this is a flat family). In “good
cases” – such as in (c) – for families of curves you expect the 0-th Fitting ideal to
be zero and the 1st Fitting ideal to define (scheme-theoretically) the singular locus.

Exercise 47.3.02FE Suppose that R is a ring and

A = R[x1, . . . , xn]/(f1, . . . , fn).

Note that we are assuming that A is presented by the same number of equations
as variables. Thus the matrix of partial derivatives

(∂fi/∂xj)

is n × n, i.e., a square matrix. Assume that its determinant is invertible as an
element in A. Note that this is exactly the condition that says that ΩA/R = (0)
in this case of n-generators and n relations. Let π : B′ → B be a surjection of
R-algebras whose kernel J has square zero (as an ideal in B′). Let ϕ : A → B
be a homomorphism of R-algebras. Show there exists a unique homomorphism of
R-algebras ϕ′ : A→ B′ such that ϕ = π ◦ ϕ′.

Exercise 47.4.02FF Find a generalization of the result of Exercise 47.3 to the case
where A = R[x, y]/(f).

Exercise 47.5.0D1T Let k be a field, let f1, . . . , fc ∈ k[x1, . . . , xn], and let A =
k[x1, . . . , xn]/(f1, . . . , fc). Assume that fj(0, . . . , 0) = 0. This means that m =
(x1, . . . , xn)A is a maximal ideal. Prove that the local ring Am is regular if the
rank of the matrix

(∂fj/∂xi)|(x1,...,xn)=(0,...,0)

is c. What is the dimension of Am in this case? Show that the converse is false
by giving an example where Am is regular but the rank is less than c; what is the
dimension of Am in your example?

48. Schemes, Final Exam, Fall 2007

02AU These were the questions in the final exam of a course on Schemes, in the Spring
of 2007 at Columbia University.

Exercise 48.1 (Definitions).02FG Provide definitions of the following concepts.

(1) X is a scheme
(2) the morphism of schemes f : X → Y is finite

http://stacks.math.columbia.edu/tag/02FD
http://stacks.math.columbia.edu/tag/02FE
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http://stacks.math.columbia.edu/tag/0D1T
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(3) the morphisms of schemes f : X → Y is of finite type
(4) the scheme X is Noetherian
(5) the OX -module L on the scheme X is invertible
(6) the genus of a nonsingular projective curve over an algebraically closed field

Exercise 48.2.02FH Let X = Spec(Z[x, y]), and let F be a quasi-coherent OX -module.
Suppose that F is zero when restricted to the standard affine open D(x).

(1) Show that every global section s of F is killed by some power of x, i.e.,
xns = 0 for some n ∈ N.

(2) Do you think the same is true if we do not assume that F is quasi-coherent?

Exercise 48.3.02FI Suppose that X → Spec(R) is a proper morphism and that R is
a discrete valuation ring with residue field k. Suppose that X ×Spec(R) Spec(k) is
the empty scheme. Show that X is the empty scheme.

Exercise 48.4.02FJ Consider the projective3 variety

P1 ×P1 = P1
C ×Spec(C) P1

C

over the field of complex numbers C. It is covered by four affine pieces, corre-
sponding to pairs of standard affine pieces of P1

C. For example, suppose we use
homogeneous coordinates X0, X1 on the first factor and Y0, Y1 on the second. Set
x = X1/X0, and y = Y1/Y0. Then the 4 affine open pieces are the spectra of the
rings

C[x, y], C[x−1, y], C[x, y−1], C[x−1, y−1].

Let X ⊂ P1×P1 be the closed subscheme which is the closure of the closed subset
of the first affine piece given by the equation

y3(x4 + 1) = x4 − 1.

(1) Show that X is contained in the union of the first and the last of the 4
affine open pieces.

(2) Show that X is a nonsingular projective curve.
(3) Consider the morphism pr2 : X → P1 (projection onto the first factor). On

the first affine piece it is the map (x, y) 7→ x. Briefly explain why it has
degree 3.

(4) Compute the ramification points and ramification indices for the map pr2 :
X → P1.

(5) Compute the genus of X.

Exercise 48.5.02FK Let X → Spec(Z) be a morphism of finite type. Suppose that
there is an infinite number of primes p such that X×Spec(Z) Spec(Fp) is not empty.

(1) Show that X ×Spec(Z) Spec(Q) is not empty.
(2) Do you think the same is true if we replace the condition “finite type” by

the condition “locally of finite type”?

3The projective embedding is ((X0, X1), (Y0, Y1)) 7→ (X0Y0, X0Y1, X1Y0, X1Y1) in other words
(x, y) 7→ (1, y, x, xy).
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49. Schemes, Final Exam, Spring 2009

02AV These were the questions in the final exam of a course on Schemes, in the Spring
of 2009 at Columbia University.

Exercise 49.1.02AW Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Let x ∈ X be a point. Assume that Supp(F) = {x}.

(1) Show that x is a closed point of X.
(2) Show that H0(X,F) is not zero.
(3) Show that F is generated by global sections.
(4) Show that Hp(X,F) = 0 for p > 0.

Remark 49.2.02AX Let k be a field. Let P2
k = Proj(k[X0, X1, X2]). Any invertible

sheaf on P2
k is isomorphic to OP2

k
(n) for some n ∈ Z. Recall that

Γ(P2
k,OP2

k
(n)) = k[X0, X1, X2]n

is the degree n part of the polynomial ring. For a quasi-coherent sheaf F on P2
k set

F(n) = F ⊗O
P2

k

OP2
k
(n) as usual.

Exercise 49.3.02AY Let k be a field. Let E be a vector bundle on P2
k, i.e., a finite locally

free OP2
k
-module. We say E is split if E is isomorphic to a direct sum invertible

OP2
k
-modules.

(1) Show that E is split if and only if E(n) is split.
(2) Show that if E is split then H1(P2

k, E(n)) = 0 for all n ∈ Z.
(3) Let

ϕ : OP2
k
−→ OP2

k
(1)⊕OP2

k
(1)⊕OP2

k
(1)

be given by linear forms L0, L1, L2 ∈ Γ(P2
k,OP2

k
(1)). Assume Li 6= 0 for

some i. What is the condition on L0, L1, L2 such that the cokernel of ϕ is
a vector bundle? Why?

(4) Given an example of such a ϕ.
(5) Show that Coker(ϕ) is not split (if it is a vector bundle).

Remark 49.4.02AZ Freely use the following facts on dimension theory (and add more
if you need more).

(1) The dimension of a scheme is the supremum of the length of chains of
irreducible closed subsets.

(2) The dimension of a finite type scheme over a field is the maximum of the
dimensions of its affine opens.

(3) The dimension of a Noetherian scheme is the maximum of the dimensions
of its irreducible components.

(4) The dimension of an affine scheme coincides with the dimension of the
corresponding ring.

(5) Let k be a field and let A be a finite type k-algebra. If A is a domain, and
x 6= 0, then dim(A) = dim(A/xA) + 1.

Exercise 49.5.02B0 Let k be a field. Let X be a projective, reduced scheme over

k. Let f : X → P1
k be a morphism of schemes over k. Assume there exists an

integer d ≥ 0 such that for every point t ∈ P1
k the fibre Xt = f−1(t) is irreducible

of dimension d. (Recall that an irreducible space is not empty.)

(1) Show that dim(X) = d+ 1.

http://stacks.math.columbia.edu/tag/02AW
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(2) Let X0 ⊂ X be an irreducible component of X of dimension d + 1. Prove
that for every t ∈ P1

k the fibre X0,t has dimension d.
(3) What can you conclude about Xt and X0,t from the above?
(4) Show that X is irreducible.

Remark 49.6.02B1 Given a projective scheme X over a field k and a coherent sheaf
F on X we set

χ(X,F) =
∑

i≥0
(−1)i dimkH

i(X,F).

Exercise 49.7.02B2 Let k be a field. Write P3
k = Proj(k[X0, X1, X2, X3]). Let C ⊂ P3

k

be a type (5, 6) complete intersection curve. This means that there exist F ∈
k[X0, X1, X2, X3]5 and G ∈ k[X0, X1, X2, X3]6 such that

C = Proj(k[X0, X1, X2, X3]/(F,G))

is a variety of dimension 1. (Variety implies reduced and irreducible, but feel free
to assume C is nonsingular if you like.) Let i : C → P3

k be the corresponding closed
immersion. Being a complete intersection also implies that

0 // OP3
k
(−11)

−G
F


// OP3

k
(−5)⊕OP3

k
(−6)

(F,G) // OP3
k

// i∗OC // 0

is an exact sequence of sheaves. Please use these facts to:

(1) compute χ(C, i∗OP3
k
(n)) for any n ∈ Z, and

(2) compute the dimension of H1(C,OC).

Exercise 49.8.02B3 Let k be a field. Consider the rings

A = k[x, y]/(xy)

B = k[u, v]/(uv)

C = k[t, t−1]× k[s, s−1]

and the k-algebra maps

A −→ C, x 7→ (t, 0), y 7→ (0, s)
B −→ C, u 7→ (t−1, 0), v 7→ (0, s−1)

It is a true fact that these maps induce isomorphisms Ax+y → C and Bu+v → C.
Hence the maps A→ C and B → C identify Spec(C) with open subsets of Spec(A)
and Spec(B). Let X be the scheme obtained by glueing Spec(A) and Spec(B) along
Spec(C):

X = Spec(A)qSpec(C) Spec(B).

As we saw in the course such a scheme exists and there are affine opens Spec(A) ⊂ X
and Spec(B) ⊂ X whose overlap is exactly Spec(C) identified with an open of each
of these using the maps above.

(1) Why is X separated?
(2) Why is X of finite type over k?
(3) Compute H1(X,OX), or what is its dimension?
(4) What is a more geometric way to describe X?

http://stacks.math.columbia.edu/tag/02B1
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50. Schemes, Final Exam, Fall 2010

069Q These were the questions in the final exam of a course on Schemes, in the Fall of
2010 at Columbia University.

Exercise 50.1 (Definitions).069R Provide definitions of the following concepts.

(1) a separated scheme,
(2) a quasi-compact morphism of schemes,
(3) an affine morphism of schemes,
(4) a multiplicative subset of a ring,
(5) a Noetherian scheme,
(6) a variety.

Exercise 50.2.069S Prime avoidance.

(1) Let A be a ring. Let I ⊂ A be an ideal and let q1, q2 be prime ideals such
that I 6⊂ qi. Show that I 6⊂ q1 ∪ q2.

(2) What is a geometric interpretation of (1)?
(3) Let X = Proj(S) for some graded ring S. Let x1, x2 ∈ X. Show that there

exists a standard open D+(F ) which contains both x1 and x2.

Exercise 50.3.069T Why is a composition of affine morphisms affine?

Exercise 50.4 (Examples).069U Give examples of the following:

(1) A reducible projective scheme over a field k.
(2) A scheme with 100 points.
(3) A non-affine morphism of schemes.

Exercise 50.5.069V Chevalley’s theorem and the Hilbert Nullstellensatz.

(1) Let p ⊂ Z[x1, . . . , xn] be a maximal ideal. What does Chevalley’s theorem
imply about p ∩ Z?

(2) In turn, what does the Hilbert Nullstellensatz imply about κ(p)?

Exercise 50.6.069W Let A be a ring. Let S = A[X] as a graded A-algebra where X
has degree 1. Show that Proj(S) ∼= Spec(A) as schemes over A.

Exercise 50.7.069X Let A → B be a finite ring map. Show that Spec(B) is a H-
projective scheme over Spec(A).

Exercise 50.8.069Y Give an example of a scheme X over a field k such that X is
irreducible and such that for some finite extension k ⊂ k the base change Xk′ =
X ×Spec(k) Spec(k′) is connected but reducible.

51. Schemes, Final Exam, Spring 2011

069Z These were the questions in the final exam of a course on Schemes, in the Spring
of 2011 at Columbia University.

Exercise 51.1 (Definitions).06A0 Provide definitions of the italicized concepts.

(1) a separated scheme,
(2) a universally closed morphism of schemes,
(3) A dominates B for local rings A,B contained in a common field,
(4) the dimension of a scheme X,
(5) the codimension of an irreducible closed subscheme Y of a scheme X,
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Exercise 51.2 (Results).06A1 State something formally equivalent to the fact discussed
in the course.

(1) The valuative criterion of properness for a morphism X → Y of varieties
for example.

(2) The relationship between dim(X) and the function field k(X) of X for a
variety X over a field k.

(3) Fill in the blank: The category of nonsingular projective curves over k and
nonconstant morphisms is anti-equivalent to . . . . . . . . ..

(4) Noether normalization.
(5) Jacobian criterion.

Exercise 51.3.06A2 Let k be a field. Let F ∈ k[X0, X1, X2] be a homogeneous form

of degree d. Assume that C = V+(F ) ⊂ P2
k is a smooth curve over k. Denote

i : C → P2
k the corresponding closed immersion.

(1) Show that there is a short exact sequence

0→ OP2
k
(−d)→ OP2

k
→ i∗OC → 0

of coherent sheaves on P2
k: tell me what the maps are and briefly why it is

exact.
(2) Conclude that H0(C,OC) = k.
(3) Compute the genus of C.
(4) Assume now that P = (0 : 0 : 1) is not on C. Prove that π : C → P1

k given
by (a0 : a1 : a2) 7→ (a0 : a1) has degree d.

(5) Assume k is algebraically closed, assume all ramification indices (the “ei”)
are 1 or 2, and assume the characteristic of k is not equal to 2. How many
ramification points does π : C → P1

k have?
(6) In terms of F , what do you think is a set of equations of the set of ramifi-

cation points of π?
(7) Can you guess KC?

Exercise 51.4.06A3 Let k be a field. Let X be a “triangle” over k, i.e., you get X by

glueing three copies of A1
k to each other by identifying 0 on the first copy to 1 on the

second copy, 0 on the second copy to 1 on the third copy, and 0 on the third copy to
1 on the first copy. It turns out that X is isomorphic to Spec(k[x, y]/(xy(x+y+1)));
feel free to use this. Compute the Picard group of X.

Exercise 51.5.06A4 Let k be a field. Let π : X → Y be a finite birational morphism of
curves with X a projective nonsingular curve over k. It follows from the material
in the course that Y is a proper curve and that π is the normalization morphism
of Y . We have also seen in the course that there exists a dense open V ⊂ Y such
that U = π−1(V ) is a dense open in X and π : U → V is an isomorphism.

(1) Show that there exists an effective Cartier divisor D ⊂ X such that D ⊂ U
and such that OX(D) is ample on X.

(2) Let D be as in (1). Show that E = π(D) is an effective Cartier divisor on
Y .

(3) Briefly indicate why
(a) the map OY → π∗OX has a coherent cokernel Q which is supported

in Y \ V , and
(b) for every n there is a corresponding map OY (nE)→ π∗OX(nD) whose

cokernel is isomorphic to Q.

http://stacks.math.columbia.edu/tag/06A1
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(4) Show that dimkH
0(X,OX(nD)) − dimkH

0(Y,OY (nE)) is bounded (by
what?) and conclude that the invertible sheaf OY (nE) has lots of sections
for large n (why?).

52. Schemes, Final Exam, Fall 2011

07DE These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2011 at Columbia University.

Exercise 52.1 (Definitions).07DF Provide definitions of the italicized concepts.

(1) a Noetherian ring,
(2) a Noetherian scheme,
(3) a finite ring homomorphism,
(4) a finite morphism of schemes,
(5) the dimension of a ring.

Exercise 52.2 (Results).07DG State something formally equivalent to the fact discussed
in the course.

(1) Zariski’s Main Theorem.
(2) Noether normalization.
(3) Chinese remainder theorem.
(4) Going up for finite ring maps.

Exercise 52.3.07DH Let (A,m, κ) be a Noetherian local ring whose residue field has
characteristic not 2. Suppose that m is generated by three elements x, y, z and that
x2 + y2 + z2 = 0 in A.

(1) What are the possible values of dim(A)?
(2) Give an example to show that each value is possible.
(3) Show that A is a domain if dim(A) = 2. (Hint: look at

⊕
n≥0 m

n/mn+1.)

Exercise 52.4.07DI Let A be a ring. Let S ⊂ T ⊂ A be multiplicative subsets.
Assume that

{q | q ∩ S = ∅} = {q | q ∩ T = ∅}.
Show that S−1A→ T−1A is an isomorphism.

Exercise 52.5.07DJ Let k be an algebraically closed field. Let

V0 = {A ∈ Mat(3× 3, k) | rank(A) = 1} ⊂ Mat(3× 3, k) = k9.

(1) Show that V0 is the set of closed points of a (Zariski) locally closed subset
V ⊂ A9

k.
(2) Is V irreducible?
(3) What is dim(V )?

Exercise 52.6.07DK Prove that the ideal (x2, xy, y2) in C[x, y] cannot be generated
by 2 elements.

Exercise 52.7.07DL Let f ∈ C[x, y] be a nonconstant polynomial. Show that for some
α, β ∈ C the C-algebra map

C[t] −→ C[x, y]/(f), t 7−→ αx+ βy

is finite.

http://stacks.math.columbia.edu/tag/07DF
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Exercise 52.8.07DM Show that given finitely many points p1, . . . , pn ∈ C2 the scheme

A2
C \ {p1, . . . , pn} is a union of two affine opens.

Exercise 52.9.07DN Show that there exists a surjective morphism of schemes A1
C →

P1
C. (Surjective just means surjective on underlying sets of points.)

Exercise 52.10.07DP Let k be an algebraically closed field. Let A ⊂ B be an ex-
tension of domains which are both finite type k-algebras. Prove that the image
of Spec(B) → Spec(A) contains a nonempty open subset of Spec(A) using the
following steps:

(1) Prove it if A→ B is also finite.
(2) Prove it in case the fraction field of B is a finite extension of the fraction

field of A.
(3) Reduce the statement to the previous case.

53. Schemes, Final Exam, Fall 2013

09TV These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2013 at Columbia University.

Exercise 53.1 (Definitions).09TW Provide definitions of the italicized concepts.

(1) a radical ideal of a ring,
(2) a finite type ring homomorphism,
(3) a differential a la Weil,
(4) a scheme.

Exercise 53.2 (Results).09TX State something formally equivalent to the fact discussed
in the course.

(1) result on hilbert polynomials of graded modules.
(2) dimension of a Noetherian local ring (R,m) and

⊕
n≥0 m

n/mn+1.

(3) Riemann-Roch.
(4) Clifford’s theorem.
(5) Chevalley’s theorem.

Exercise 53.3.09TY Let A→ B be a ring map. Let S ⊂ A be a multiplicative subset.

Assume that A → B is of finite type and S−1A → S−1B is surjective. Show that
there exists an f ∈ S such that Af → Bf is surjective.

Exercise 53.4.09TZ Give an example of an injective local homomorphism A → B of
local rings, such that Spec(B)→ Spec(A) is not surjective.

Situation 53.5 (Notation plane curve).09U0 Let k be an algebraically closed field.
Let F (X0, X1, X2) ∈ k[X0, X1, X2] be an irreducible polynomial homogeneous of
degree d. We let

D = V (F ) ⊂ P2

be the projective plane curve given by the vanishing of F . Set x = X1/X0 and y =

X2/X0 and f(x, y) = X−d0 F (X0, X1, X2) = F (1, x, y). We denote K the fraction
field of the domain k[x, y]/(f). We let C be the abstract curve corresponding to
K. Recall (from the lectures) that there is a surjective map C → D which is
bijective over the nonsingular locus of D and an isomorphism if D is nonsingular.
Set fx = ∂f/∂x and fy = ∂f/∂y. Finally, we denote ω = dx/fy = −dy/fx the
element of ΩK/k discussed in the lectures. Denote KC the divisor of zeros and poles
of ω.

http://stacks.math.columbia.edu/tag/07DM
http://stacks.math.columbia.edu/tag/07DN
http://stacks.math.columbia.edu/tag/07DP
http://stacks.math.columbia.edu/tag/09TW
http://stacks.math.columbia.edu/tag/09TX
http://stacks.math.columbia.edu/tag/09TY
http://stacks.math.columbia.edu/tag/09TZ
http://stacks.math.columbia.edu/tag/09U0


EXERCISES 55

Exercise 53.6.09U1 In Situation 53.5 assume d ≥ 3 and that the curve D has exactly
one singular point, namely P = (1 : 0 : 0). Assume further that we have the
expansion

f(x, y) = xy + h.o.t

around P = (0, 0). Then C has two points v and w lying over over P characterized
by

v(x) = 1, v(y) > 1 and w(x) > 1, w(y) = 1

(1) Show that the element ω = dx/fy = −dy/fx of ΩK/k has a first order pole
at both v and w. (The behaviour of ω at nonsingular points is as discussed
in the lectures.)

(2) In the lectures we have shown that ω vanishes to order d− 3 at the divisor
X0 = 0 pulled back to C under the map C → D. Combined with the
information of (1) what is the degree of the divisor of zeros and poles of ω
on C?

(3) What is the genus of the curve C?

Exercise 53.7.09U2 In Situation 53.5 assume d = 5 and that the curve C = D is
nonsingular. In the lectures we have shown that the genus of C is 6 and that the
linear system KC is given by

L(KC) = {hω | h ∈ k[x, y], deg(h) ≤ 2}
where deg indicates total degree4. Let P1, P2, P3, P4, P5 ∈ D be pairwise distinct
points lying in the affine open X0 6= 0. We denote

∑
Pi = P1 + P2 + P3 + P4 + P5

the corresponding divisor of C.

(1) Describe L(KC −
∑
Pi) in terms of polynomials.

(2) What are the possibilities for l(
∑
Pi)?

Exercise 53.8.09U3 Write down an F as in Situation 53.5 with d = 100 such that the
genus of C is 0.

Exercise 53.9.09U4 Let k be an algebraically closed field. LetK/k be finitely generated
field extension of transcendence degree 1. Let C be the abstract curve corresponding
to K. Let V ⊂ K be a grd and let Φ : C → Pr be the corresponding morphism.
Show that the image of C is contained in a quadric5 if V is a complete linear system
and d is large enough relative to the genus of C. (Extra credit: good bound on the
degree needed.)

Exercise 53.10.09U5 Notation as in Situation 53.5. Let U ⊂ P2
k be the open subscheme

whose complement is D. Describe the k-algebra A = OP2
k
(U). Give an upper bound

for the number of generators of A as a k-algebra.

54. Schemes, Final Exam, Spring 2014

0AAL These were the questions in the final exam of a course on Schemes, in the Spring
of 2014 at Columbia University.

Exercise 54.1 (Definitions).0AAM Let (X,OX) be a scheme. Provide definitions of the
italicized concepts.

4We get ≤ 2 because d− 3 = 5− 3 = 2.
5A quadric is a degree 2 hypersurface, i.e., the zero set in Pr of a degree 2 homogeneous

polynomial.
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(1) the local ring of X at a point x,
(2) a quasi-coherent sheaf of OX -modules,
(3) a coherent sheaf of OX -modules (please assume X is locally Noetherian,
(4) an affine open of X,
(5) a finite morphism of schemes X → Y .

Exercise 54.2 (Theorems).0AAN Precisely state a nontrivial fact discussed in the lec-
tures related to each item.

(1) on birational invariance of pluri-genera of varieties,
(2) being an affine morphism is a local property,
(3) the topology of a scheme theoretic fibre of a morphism, and
(4) valuative criterion of properness.

Exercise 54.3.0AAP Let X = A2
C where C is the field of complex numbers. A line will

mean a closed subscheme of X defined by one linear equation ax + by + c = 0 for
some a, b, c ∈ C with (a, b) 6= (0, 0). A curve will mean an irreducible (so nonempty)
closed subscheme C ⊂ X of dimension 1. A quadric will mean a curve defined by
one quadratic equation ax2 + bxy+ cy2 +dx+ey+f = 0 for some a, b, c, d, e, f ∈ C
and (a, b, c) 6= (0, 0, 0).

(1) Find a curve C such that every line has nonempty intersection with C.
(2) Find a curve C such that every line and every quadric has nonempty inter-

section with C.
(3) Show that for every curve C there exists another curve such that C∩C ′ = ∅.

Exercise 54.4.0AAQ Let k be a field. Let b : X → A2
k be the blow up of the affine

plane in the origin. In other words, if A2
k = Spec(k[x, y]), then X = Proj(

⊕
n≥0 m

n)

where m = (x, y) ⊂ k[x, y]. Prove the following statements

(1) the scheme theoretic fibre E of b over the origin is isomorphic to P1
k,

(2) E is an effective Cartier divisor on X,
(3) the restriction of OX(−E) to E is a line bundle of degree 1.

(Recall that OX(−E) is the ideal sheaf of E in X.)

Exercise 54.5.0AAR Let k be a field. Let X be a projective variety over k. Show there
exists an affine variety U over k and a surjective morphism of varieties U → X.

Exercise 54.6.0AAS Let k be a field of characteristic p > 0 different from 2, 3. Consider
the closed subscheme X of Pn

k defined by∑
i=0,...,n

Xi = 0,
∑

i=0,...,n
X2
i = 0,

∑
i=0,...,n

X3
i = 0

For which pairs (n, p) is this variety singular?

55. Commutative Algebra, Final Exam, Fall 2016

0D5F These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2016 at Columbia University.

Exercise 55.1 (Definitions).0D5G Let R be a ring. Provide definitions of the italicized
concepts.

(1) the local ring of R at a prime p,
(2) a finite R-module,
(3) a finitely presented R-module,
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(4) R is regular,
(5) R is catenary,
(6) R is Cohen-Macaulay.

Exercise 55.2 (Theorems).0D5H Precisely state a nontrivial fact discussed in the lec-
tures related to each item.

(1) regular rings,
(2) associated primes of Cohen-Macaulay modules,
(3) dimension of a finite type domain over a field, and
(4) Chevalley’s theorem.

Exercise 55.3.0D5I Let A→ B be a ring map such that

(1) A is local with maximal ideal m,
(2) A→ B is a finite6 ring map,
(3) A→ B is injective (we think of A as a subring of B).

Show that there is a prime ideal q ⊂ B with m = A ∩ q.

Exercise 55.4.0D5J Let k be a field. Let R = k[x, y, z, w]. Consider the ideal I =
(xy, xz, xw). What are the irreducible components of V (I) ⊂ Spec(R) and what
are their dimensions?

Exercise 55.5.0D5K Let k be a field. Let A = k[x, x−1] and B = k[y]. Show that any
k-algebra map ϕ : A→ B maps x to a constant.

Exercise 55.6.0D5L Consider the ring R = Z[x, y]/(xy − 7). Prove that R is regular.

Given a Noetherian local ring (R,m, κ) for n ≥ 0 we let ϕR(n) = dimκ(mn/mn+1).

Exercise 55.7.0D5M Does there exist a Noetherian local ring R with ϕR(n) = n + 1
for all n ≥ 0?

Exercise 55.8.0D5N Let R be a Noetherian local ring. Suppose that ϕR(0) = 1,
ϕR(1) = 3, ϕR(2) = 5. Show that ϕR(3) ≤ 7.

56. Schemes, Final Exam, Spring 2017

0DSZ These were the questions in the final exam of a course on schemes, in the Spring of
2017 at Columbia University.

Exercise 56.1 (Definitions).0DT0 Let f : X → Y be a morphism of schemes. Provide
brief definitions of the italicized concepts.

(1) the scheme theoretic fibre of f at y ∈ Y ,
(2) f is a finite morphism,
(3) a quasi-coherent OX -module,
(4) X is variety,
(5) f is a smooth morphism,
(6) f is a proper morphism.

Exercise 56.2 (Theorems).0DT1 Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item.

(1) pushforward of quasi-coherent sheaves,
(2) cohomology of coherent sheaves on projective varieties,

6Recall that this means B is finite as an A-module.
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(3) Serre duality for a projective scheme over a field, and
(4) Riemann-Hurwitz.

Exercise 56.3.0DT2 Let k be an algebraically closed field. Let ` > 100 be a prime
number different from the characteristic of k. Let X be the nonsingular projective
model of the affine curve given by the equation

y` = x(x− 1)3

in A2
k. Answer the following questions:

(1) What is the genus of X?
(2) Give an upper bound for the gonality7 of X.

Exercise 56.4.0DT3 Let k be an algebraically closed field. Let X be a reduced, pro-
jective scheme over k all of whose irreducible components have the same dimension
1. Let ωX/k be the relative dualizing module. Show that if dimkH

1(X,ωX/k) > 1,
then X is disconnected.

Exercise 56.5.0DT4 Give an example of a scheme X and a nontrivial invertible OX -

module L such that both H0(X,L) and H0(X,L⊗−1) are nonzero.

Exercise 56.6.0DT5 Let k be an algebraically closed field. Let g ≥ 3. Let X and X ′

be smooth projective curves over k of genus g and g + 1. Let Y ⊂ X × X ′ be a
curve such that the projections Y → X and Y → X ′ are nonconstant. Prove that
the nonsingular projective model of Y has genus ≥ 2g + 1.

Exercise 56.7.0DT6 Let k be a finite field. Let g > 1. Sketch a proof of the following:
there are only a finite number of isomorphism classes of smooth projective curves
over k of genus g. (You will get credit for even just trying to answer this.)

57. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites

(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms

7The gonality is the smallest degree of a nonconstant morphism from X to P1
k.
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