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1. Introduction

OEDR In this chapter we first discuss Chow groups of algebraic spaces. Having defined
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these, we define Chern classes of vector bundles as operators on these chow groups.
The strategy will be entirely the same as the strategy in the case of schemes.
Therefore we urge the reader to take a look at the introduction (Chow Homology,
Section [1)) of the corresponding chapter for schemes.

Some related papers: [EG98] and [Kre99].

2. Setup

We first fix the category of algebraic spaces we will be working with. Please keep
in mind throughout this chapter that “decent + locally Noetherian” is the same as
“quasi-separated + locally Noetherian” according to Decent Spaces, Lemma [14.1

Situation 2.1. Here S is a scheme and B is an algebraic space over S. We assume
B is quasi-separated, locally Noetherian, and universally catenary (Decent Spaces,
Definition . Moreover, we assume given a dimension function ¢ : |B| — Z.
We say X/B is good if X is an algebraic space over B whose structure morphism
f: X — B is quasi-separated and locally of finite type. In this case we define

as the map sending x to 6(f(x)) plus the transcendence degree of z/f(x) (Mor-
phisms of Spaces, Definition [33.1]). This is a dimension function by More on Mor-
phisms of Spaces, Lemma [32.2

A special case is when S = B is a scheme and (5,6) is as in Chow Homology,
Situation Thus B might be the spectrum of a field (Chow Homology, Example
or B = Spec(Z) (Chow Homology, Example [7.3)).

Many lemma, proposition, theorems, definitions on algebraic spaces are easier in the
setting of Situation 2.1 because the algebraic spaces we are working with are quasi-
separated (and thus a fortiori decent) and locally Noetherian. We will sprinkle this
chapter with remarks such as the following to point this out.

Remark 2.2. In Situation if X/B is good, then |X| is a sober topological
space. See Properties of Spaces, Lemma or Decent Spaces, Proposition [12.4]
We will use this without further mention to choose generic points of irreducible
closed subsets of | X|.

Remark 2.3. In Situation if X/B is good, then X is integral (Spaces over
Fields, Definition if and only if X is reduced and | X]| is irreducible. Moreover,
for any point £ € | X| there is a unique integral closed subspace Z C X such that &
is the generic point of the closed subset |Z| C | X]|, see Spaces over Fields, Lemma

47

If B is Jacobson and § sends closed points to zero, then ¢ is the function sending a
point to the dimension of its closure.

Lemmal 2.4. In Situation assume B is Jacobson and that §(b) = 0 for every
closed point b of |B|. Let X/B be good. If Z C X is an integral closed subspace
with generic point £ € |Z|, then the following integers are the same:

(1) 6(§) = ox/B(8),
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(2) dim(]2]),

(3) codim({z},|Z|) for z € |Z| closed,

(4) the dimension of the local ring of Z at z for z € |Z| closed, and
(5) dim(Ogzz) for z € |Z] closed.

Proof. Let X, Z, € be as in the lemma. Since X is locally of finite type over B we
see that X is Jacobson, see Decent Spaces, Lemma Hence Xfypts C |X| is the
set of closed points by Decent Spaces, Lemma Given a chain Ty O ... D T,
of irreducible closed subsets of |Z| we have T, N Xj.pts nonempty by Morphisms of
Spaces, Lemma m Thus we can always assume such a chain ends with T, = {2z}
for some z € |Z] closed. It follows that dim(Z) = sup, codim({z}, |Z]) where z runs
over the closed points of |Z]. We have codim({z}, Z) = §(&) — d(z) by Topology,
Lemma, By Morphisms of Spaces, Lemma the image of z is a finite type
point of B, i.e., a closed point of |B|. By Morphisms of Spaces, Lemma the
transcendence degree of z/b is 0. We conclude that 6(z) = 6(b) = 0 by assumption.
Thus we obtain equality

dim(]Z]) = codim({z}, Z) = 6(¢)
for all z € |Z] closed. Finally, we have that codim({z}, Z) is equal to the dimension

of the local ring of Z at z by Decent Spaces, Lemma which in turn is equal to
dim(Ozz) by Properties of Spaces, Lemma m O

In the situation of the lemma above the value of ¢ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. This motivates
the following definition.

Definition 2.5. In Situation for any good X/B and any irreducible closed
subset T' C |X| we define

dim;(T') = 6(£)
where £ € T is the generic point of T. We will call this the §-dimension of T.
If T C |X] is any closed subset, then we define dims(7") as the supremum of the

0-dimensions of the irreducible components of T'. If Z is a closed subspace of X,
then we set dims(Z) = dims(|Z]).

Of course this just means that dimg(T) = sup{d(¢) |t € T'}.

3. Cycles
This is the analogue of Chow Homology, Section

Since we are not assuming our spaces are quasi-compact we have to be a little careful
when defining cycles. We have to allow infinite sums because a rational function
may have infinitely many poles for example. In any case, if X is quasi-compact
then a cycle is a finite sum as usual.

Definition 3.1. In Situation let X/B be good. Let k € Z.

(1) A cycle on X is a formal sum

a= an[Z]

where the sum is over integral closed subspaces Z C X, each ny € Z,
and {|Z|;nz # 0} is a locally finite collection of subsets of |X| (Topology,
Definition [28.4]).
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(2) A k-cycle on X is a cycle

a=> nglZ

where nyz # 0 = dims(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zj(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subspaces (Remark of d-dimension k. Addition of k-cycles
a=>nz[Z] and B =5 mz[Z] is given by

a+p8="3 (nz+mz)2),
i.e., by adding the coeflicients.

4. Multiplicities
A section with a few simple results on lengths and multiplicities.

Lemma 4.1. Let S be a scheme and let X be an algebraic space over S. Let F be
a quasi-coherent Ox-module. Let v € |X|. Let d € {0,1,2,...,00}. The following
are equivalent
(1) lengtho  _Fz=d
(2) for some étale morphism U — X with U a scheme and u € U mapping to
x we have lengthy, (Flu)u =d
(3) for any étale morphism U — X with U a scheme and u € U mapping to x
we have lengthy,, (Flv)u =d

Proof. Let U — X and u € U be as in (2) or (3). Then we know that Ox z is the
strict henselization of Oy, and that

Fz = (Flu)u ®oy., Oxz

See Properties of Spaces, Lemmas and Thus the equality of the lengths
follows from Algebra, Lemma the fact that Oy, — Ox 7 is flat and the fact
that Ox z/m,Ox 3 is equal to the residue field of Ox z. These facts about strict
henselizations can be found in More on Algebra, Lemma [45.1 (]

Definition 4.2. Let S be a scheme and let X be an algebraic space over S. Let
F be a quasi-coherent Ox-module. Let © € |X|. Let d € {0,1,2,...,00}. We say
F has length d at x if the equivalent conditions of Lemma [4.1] are satisfied.

Lemma 4.3. Let S be a scheme. Leti :' Y — X be a closed immersion of
algebraic spaces over S. Let G be a quasi-coherent Oy -module. Let y € |Y| with
image x € |X|. Let d € {0,1,2,...,00}. The following are equivalent

(1) G has length d at y, and

(2) i+G has length d at x.

Proof. Choose an étale morphism f : U — X with U a scheme and v € U mapping
tox. Set V=Y xx U. Denote g: V — Y and j : V — U the projections. Then
7V — U is a closed immersion and there is a unique point v € V mapping to
y € |Y| and v € U (use Properties of Spaces, Lemma and Spaces, Lemma
[12.3). We have j.(G|v) = (i~G)|u as modules on the scheme V and j, the “usual”
pushforward of modules for the morphism of schemes j, see discussion surrounding
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Cohomology of Spaces, Equation (3.0.1). In this way we reduce to the case of
schemes: if i : Y — X is a closed immersion of schemes, then

as modules over Ox , where the module structure on the right hand side is given
by the surjection zg : Ox o — Oy,y. Thus equality by Algebra, Lemma (]

Lemma 4.4. Let S be a scheme and let X be a locally Noetherian algebraic space
over S. Let F be a coherent Ox-module. Let x € | X|. The following are equivalent

(1) for some étale morphism U — X with U a scheme and u € U mapping to
x we have u is a generic point of an irreducible component of Supp(F|v),
(2) for any étale morphism U — X with U a scheme and u € U mapping to x
we have u is a generic point of an irreducible component of Supp(F|v),
(3) the length of F at x is finite and nonzero.

If X is decent (equivalently quasi-separated) then these are also equivalent to
(4) x is a generic point of an irreducible component of Supp(F).

Proof. Assume f: U — X is an étale morphism with U a scheme and v € U maps
to . Then F|y = f*F is a coherent Oy-module on the locally Noetherian scheme
U and in particular (F|y), is a finite Oy ,-module, see Cohomology of Spaces,
Lemma and Cohomology of Schemes, Lemma Recall that the support
of Fly is a closed subset of U (Morphisms, Lemma and that the support of
(Flu)u is the pullback of the support of F|y by the morphism Spec(Op,.,) — U.
Thus u is a generic point of an irreducible component of Supp(F|y) if and only if
the support of (F|y), is equal to the maximal ideal of Oy ,. Now the equivalence
of (1), (2), (3) follows from by Algebra, Lemma [62.3]

If X is decent we choose an étale morphism f : U — X and a point © € U mapping
to . The support of F pulls back to the support of F|i7, see Morphisms of Spaces,
Lemma Also, specializations z’ ~» x in |X| lift to specializations v’ ~» u in U
and any nontrivial specialization 4’ ~ u in U maps to a nontrivial specialization
f(u') ~ f(u) in | X|, see Decent Spaces, Lemmas and Using that |X]|
and U are sober topological spaces (Decent Spaces, Proposition and Schemes,
Lemma we conclude z is a generic point of the support of F if and only if u
is a generic point of the support of F|y. We conclude (4) is equivalent to (1).

The parenthetical statement follows from Decent Spaces, Lemma [14.1 O

Lemma 4.5. In Situation let X/B be good. Let T C |X| be a closed subset
andt € T. If dims(T) < k and 6(t) = k, then t is a generic point of an irreducible
component of T.

Proof. We know ¢ is contained in an irreducible component 77 C T. Let ' € T’
be the generic point. Then k > §(¢') > §(¢). Since § is a dimension function we see
that t =t/ O

5. Cycle associated to a closed subspace
This section is the analogue of Chow Homology, Section [0

Remark/5.1. In Situationlet X/B be good. Let Y C X be a closed subspace.
By Remarks [2:2] and 23] there are 1-to-1 correspondences between

(1) irreducible components T of |V,
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(2) generic points of irreducible components of Y|, and
(3) integral closed subspaces Z C Y with the property that |Z] is an irreducible
component of |Y.

In this chapter we will call Z as in (3) an irreducible component of Y and we will
call £ € |Z] its generic point.

Definition 5.2. In Situation let X/B be good. Let Y C X be a closed
subspace.

(1) For an irreducible component Z C Y with generic point £ the length of Oy
at ¢ (Definition is called the multiplicity of Z in Y. By Lemma
applied to Oy on Y this is a positive integer.

(2) Assume dims(Y) < k. The k-cycle associated to Y is

Y=Y _mzy[Z]

where the sum is over the irreducible components Z of Y of d-dimension &
and mzy is the multiplicity of Z in Y. This is a k-cycle by Spaces over
Fields, Lemma 6.1

It is important to note that we only define [Y]; if the d-dimension of Y does not
exceed k. In other words, by convention, if we write [Y]; then this implies that
dimg (Y) S k.

6. Cycle associated to a coherent sheaf
This is the analogue of Chow Homology, Section

Definition 6.1. In Situation let X/B be good. Let F be a coherent Ox-
module.

(1) For an integral closed subspace Z C X with generic point £ such that |Z]
is an irreducible component of Supp(F) the length of F at £ (Definition
is called the multiplicity of Z in F. By Lemma this is a positive
integer.

(2) Assume dimgs(Supp(F)) < k. The k-cycle associated to F is

Fle =Y _mz7[Z]

where the sum is over the integral closed subspaces Z C X corresponding
to irreducible components of Supp(F) of J-dimension k and mz r is the
multiplicity of Z in F. This is a k-cycle by Spaces over Fields, Lemma [6.1

It is important to note that we only define [F]y, if F is coherent and the §-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F]i then
this implies that F is coherent on X and dimgs(Supp(F)) < k.

Lemmal 6.2. In Situation let X/B be good. Let F be a coherent Ox-module
with dims (Supp(F)) < k. Let Z be an integral closed subspace of X with dims(Z) =
k. Let & € |Z] be the generic point. Then the coefficient of Z in [Fi is the length
of F at €.

Proof. Observe that |Z| is an irreducible component of Supp(F) if and only if
& € Supp(F), see Lemma Moreover, the length of F at £ is zero if £ & Supp(F).
Combining this with Definition [6.1] we conclude. O
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Lemmal 6.3. In Situation let X/B be good. Let Y C X be a closed subspace.
If dims(Y) < k, then [Y]x = [i.Oy |y where i :Y — X is the inclusion morphism.

Proof. Let Z be an integral closed subspace of X with dims(Z) = k. If Z ¢ Y the
Z has coefficient zero in both [Y]; and [i.Oy]i. If Z C Y, then the generic point of
Z may be viewed as a point y € |Y| whose image « € |X|. Then the coefficient of
Z in [Y]y, is the length of Oy at y and the coefficient of Z in [i.Oy | is the length
of i,Oy at x. Thus the equality of the coefficients follows from Lemma [4.3 (]

Lemma 6.4. In Situation let X/B be good. Let 0 = F -G —-H —0bea
short exact sequence of coherent Ox-modules. Assume that the d-dimension of the
supports of F, G, and H are < k. Then [Glr = [Flr + [H]k-

Proof. Let Z be an integral closed subspace of X with dims(Z) = k. It suffices
to show that the coefficients of Z in [Glk, [F]k, and [H]) satisfy the corresponding
additivity. By Lemma [6.2] it suffices to show

the length of G at x = the length of F at = + the length of H at =

for any = € | X|. Looking at Definition this follows immediately from additivity
of lengths, see Algebra, Lemma [52.3 O

7. Preparation for proper pushforward
This section is the analogue of Chow Homology, Section

Lemma|7.1. In Sz'tuatz'on let X,Y/B be good and let f : X — 'Y be a morphism
over B. If Z C X 1is an integral closed subspace, then there exists a unique integral
closed subspace Z' C'Y such that there is a commutative diagram

J——X

| b

7' —=Y
with Z — Z' dominant. If [ is proper, then Z — Z' is proper and surjective.

Proof. Let & € |Z| be the generic point. Let Z' C Y be the integral closed subspace
whose generic point is &' = f(€), see Remark 2.3} Since ¢ € |f~1(Z")| = |f|~1(|Z'))
by Properties of Spaces, Lemma and since Z is the reduced with |Z| = {€} we
see that Z C f~1(Z') as closed subspaces of X (see Properties of Spaces, Lemma
. Thus we obtain our morphism Z — Z’. This morphism is dominant as the
generic point of Z maps to the generic point of Z’. Uniqueness of Z' is clear. If f is
proper, then Z — Y is proper as a composition of proper morphisms (Morphisms
of Spaces, Lemmas and . Then we conclude that Z — Z’ is proper by
Morphisms of Spaces, Lemma Surjectivity then follows as the image of a
proper morphism is closed. O

Remark 7.2. In Situationlet X/B be good. Every x € | X| can be represented
by a (unique) monomorphism Spec(k) — X where k is a field, see Decent Spaces,
Lemma Then k is the residue field of x and is denoted x(x). Recall that X
has a dense open subscheme U C X (Properties of Spaces, Proposition . If
x € U, then k(z) agrees with the residue field of  on U as a scheme. See Decent
Spaces, Section
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Remark 7.3. In Situation let X/B be good. Assume X is integral. In this
case the function field R(X) of X is defined and is equal to the residue field of X
at its generic point. See Spaces over Fields, Definition Combining this with
Remark we find that for any = € X the residue field x(x) is the function field
of the unique integral closed subspace Z C X whose generic point is x.

Lemma 7.4. In Situatz’on let X,Y/B be good and let f : X — Y be a mor-
phism over B. Assume X, Y integral and dims(X) = dims(Y). Then either f
factors through a proper closed subspace of Y, or f is dominant and the extension
of function fields R(X)/R(Y) is finite.

Proof. By Lemma there is a unique integral closed subspace Z C Y such
that f factors through a dominant morphism X — Z. Then Z =Y if and only if
dims(Z) = dims(Y"). On the other hand, by our construction of dimension functions
(see Situation we have dims(X) = dims(Z) 4+ r where r the transcendence de-
gree of the extension R(X)/R(Z). Combining this with Spaces over Fields, Lemma
[£.1] the lemma follows. O

Lemma 7.5. In Sz’tuatz’on let X,Y/B be good. Let f: X — Y be a morphism

over B. Assume f is quasi-compact, and {T;}icr is a locally finite collection of

closed subsets of | X|. Then {|f|(T;)}ier is a locally finite collection of closed subsets
of [Y].

Proof. Let V C |Y| be a quasi-compact open subset. Then |f|~1 (V) C |X|is quasi-
compact by Morphisms of Spaces, Lemma Hence theset {i € I : T;N|f|71(V) #
0} is finite by a simple topological argument which we omit. Since this is the same
as the set

{ie L [f(T)NV #0}={iel:|fI(T;) NV #0}

the lemma is proved. O

8. Proper pushforward
This section is the analogue of Chow Homology, Section

Definition 8.1. In Situation let X,Y/B be good. Let f : X — Y be a
morphism over B. Assume f is proper.

(1) Let Z C X be an integral closed subspace with dims(Z) = k. Let Z' C Y
be the image of Z as in Lemma [7.1] We define

0 if dims(Z’) < k,
fl2l= {deg(z/zf)[z’] if dimi(Z’):k-

The degree of Z over Z' is defined and finite if dims(Z') = dims(Z) by
Lemma [7.4] and Spaces over Fields, Definition
(2) Let o =) " nz[Z] be a k-cycle on X. The pushforward of o as the sum

Jea = Zan*[Z]

where each f.[Z] is defined as above. The sum is locally finite by Lemma
above.

By definition the proper pushforward of cycles


https://stacks.math.columbia.edu/tag/0ENX
https://stacks.math.columbia.edu/tag/0ENY
https://stacks.math.columbia.edu/tag/0ENZ
https://stacks.math.columbia.edu/tag/0EP1

0EP2

0EP3

CHOW GROUPS OF SPACES 9

is a homomorphism of abelian groups. It turns X +— Z(X) into a covariant
functor on the category whose object are good algebraic spaces over B and whose
morphisms are proper morphisms over B.

Lemma 8.2. In Situationlet X,Y,Z/B be good. Let f : X - Y andg:Y — Z
be proper morphisms over B. Then g, o fx = (go f)« as maps Zyp(X) — Zy(Z).

Proof. Let W C X be an integral closed subspace of dimension k. Consider the
integral closed subspaces W’ C Y and W” C Z we get by applying Lemma to
f and W and then to g and W’. Then W — W’ and W/ — W" are surjective and
proper. We have to show that g.(f.[W]) = (f 0 ¢)«[W]. If dims(W") < k, then
both sides are zero. If dims(W") = k, then we see W — W' and W' — W both
satisfy the hypotheses of Lemma [7.4 Hence

9 (f<[W]) = deg(W/W') deg(W'/W")[W"],  (f 0g)«[W] = deg(W/W")[W"].
Then we can apply Spaces over Fields, Lemma [5.3] to conclude. O

Lemma 8.3. In Situation let f: X — Y be a proper morphism of good
algebraic spaces over B.

(1) Let Z C X be a closed subspace with dims(Z) < k. Then

felZ)k = [f+Oz]k.
(2) Let F be a coherent sheaf on X such that dims(Supp(F)) < k. Then

f*[]:]k = [f*]:]k

Note that the statement makes sense since f.JF and f.Oyz are coherent Oy -modules
by Cohomology of Spaces, Lemma [20.2

Proof. Part (1) follows from (2) and Lemma Let F be a coherent sheaf on
X. Assume that dims(Supp(F)) < k. By Cohomology of Spaces, Lemma [12.7]
there exists a closed immersion i : Z — X and a coherent Oz-module G such that
1+G = F and such that the support of F is Z. Let Z’ C Y be the scheme theoretic
image of f|z : Z — Y, see Morphisms of Spaces, Definition Consider the
commutative diagram

Iz i lf

7y
of algebraic spaces over B. Observe that f|z is surjective (follows from Morphisms
of Spaces, Lemma and the fact that |f| is closed) and proper (follows from
Morphisms of Spaces, Lemmas [40.3] [40.5] and [40.6). We have f.F = f.i.G =

i, (f|z)«G by going around the diagram in two ways. Suppose we know the result
holds for closed immersions and for f|z. Then we see that

FlFle = £eilGle = ()4 (F12)41G1k = ()[(f12)+Glk = [()(f12)+Glk = [£: Tk

as desired. The case of a closed immersion follows from Lemma and the defi-
nitions. Thus we have reduced to the case where dims(X) < kand f: X — Y is
proper and surjective.
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Assume dims(X) < kand f: X — Y is proper and surjective. For every irreducible
component Z C Y with generic point 7 there exists a point £ € X such that
f(&) =n. Hence d(n) < 06(¢) < k. Thus we see that in the expressions

FlFle = nzlZ], and [fFlk=)» mzlZ].

whenever ny # 0, or myz # 0 the integral closed subspace Z is actually an irre-
ducible component of Y of d-dimension k (see Lemma . Pick such an integral
closed subspace Z C Y and denote 7 its generic point. Note that for any £ € X
with f(§) = n we have §(§) > k and hence ¢ is a generic point of an irreducible
component of X of §-dimension k as well (see Lemma . By Spaces over Fields,
Lemma there exists an open subspace n € V C Y such that f~1(V) — V is
finite. Since 7 is a generic point of an irreducible component of |Y| we may assume
V is an affine scheme, see Properties of Spaces, Proposition Replacing Y
by V and X by f~1(V) we reduce to the case where Y is affine, and f is finite.
In particular X and Y are schemes and we reduce to the corresponding result for
schemes, see Chow Homology, Lemma m (applied with S =Y). O

9. Preparation for flat pullback
This section is the analogue of Chow Homology, Section

Recall that a morphism of algebraic spaces is said to have relative dimension r if
étale locally on the source and the target we get a morphism of schemes which
has relative dimension r. The precise definition is equivalent, but in fact slightly
different, see Morphisms of Spaces, Definition

Lemma 9.1. In Situatz’on let X,Y/B be good. Let f : X =Y be a morphism
over B. Assume f is flat of relative dimension r. For any closed subset T C |Y|
we have

dims(|f|~H(T)) = dims(T) + 7.

provided |f|71(T) is nonempty. If Z C Y is an integral closed subscheme and
7" C f~YZ) is an irreducible component, then Z' dominates Z and dimg(Z') =
dims(Z) +r.

Proof. Since the -dimension of a closed subset is the supremum of the j-dimensions
of the irreducible components, it suffices to prove the final statement. We may re-
place Y by the integral closed subscheme Z and X by f~1(Z) = Z xy X. Hence
we may assume Z = Y is integral and f is a flat morphism of relative dimension
r. Since Y is locally Noetherian the morphism f which is locally of finite type,
is actually locally of finite presentation. Hence Morphisms of Spaces, Lemma [30.6
applies and we see that f is open. Let £ € X be a generic point of an irreducible
component of X. By the openness of f we see that f(£) is the generic point 7
of Z =Y. Thus Z' dominates Z = Y. Finally, we see that £ and n are in the
schematic locus of X and Y by Properties of Spaces, Proposition Since £ is a
generic point of X we see that Ox ¢ = Ox, ¢ has only one prime ideal and hence
has dimension 0 (we may use usual local rings as £ and 7 are in the schematic loci
of X and Y). Thus by Morphisms of Spaces, Lemma (and the definition of
morphisms of given relative dimension) we conclude that the transcendence degree
of k(&) over k(n) is r. In other words, §(§) = d(n) + r as desired. O
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Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.

Lemma 9.2. In Sz’tuation let X,Y/B be good. Let f: X —Y be a morphism
over B. Assume {T;}icr is a locally finite collection of closed subsets of |Y|. Then
{lfI7 (T Yier is a locally finite collection of closed subsets of X.

Proof. Let U C | X| be a quasi-compact open subset. Since the image | f|(U) C |Y]
is a quasi-compact subset there exists a quasi-compact open V' C |Y| such that
|f|(U) C V. Note that

Gel:|fI ™" T)NU#0yCc{iel:T,NnV #£0}.

Since the right hand side is finite by assumption we win. O

10. Flat pullback

This section is the analogue of Chow Homology, Section

Let S be a scheme and let f : X — Y be a morphism of algebraic spaces over S. Let
Z C Y be a closed subspace. In this chapter we will sometimes use the terminology
scheme theoretic inverse image for the inverse image f~1(Z) of Z constructed in
Morphisms of Spaces, Definition [13.2] The scheme theoretic inverse image is the
fibre product

fU(2) —=X

|

Z Y
If T C Oy is the quasi-coherent sheaf of ideals corresponding to Z in Y, then
f~Y(Z)Ox is the quasi-coherent sheaf of ideals corresponding to f~1(Z) in X.
Definition 10.1. In Situation let X,Y/B be good. Let f : X — Y be a
morphism over B. Assume f is flat of relative dimension 7.

(1) Let Z C Y be an integral closed subspace of §-dimension k. We define f*[Z]
to be the (k+7)-cycle on X associated to the scheme theoretic inverse image

12 =1 D)wsr
This makes sense since dims(f~1(Z)) = k + r by Lemma
(2) Let a = n;[Z;] be a k-cycle on Y. The flat pullback of o by f is the sum

ffa= Znif* [Z;]
where each f*[Z;] is defined as above. The sum is locally finite by Lemma
.2
(3) We denote f*: Zy(Y) = Zg4r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U C X is open then sometimes the pullback by 7 : U — X of a cycle
is called the restriction of the cycle to U. Note that in this case the maps

J* Ze(X) — Z(U)

are all surjective. The reason is that given any integral closed subspace Z' C U, we
can take the closure of Z of Z’ in X and think of it as a reduced closed subspace
of X (see Properties of Spaces, Definition . And clearly ZNU = Z’, in other
words j*[Z] = [Z'] whence the surjectivity. In fact a little bit more is true.
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Lemma 10.2. In Sz'tuatz'on let X/B be good. Let U C X be an open subspace.
LetY be the reduced closed subspace of X with |Y| = |X|\|U| and denotei:Y — X
the inclusion morphism. For every k € Z the sequence

. *
2

Zn(Y) — s Zy(X) —L> Z(U) ——0
is an exact complex of abelian groups.

Proof. Surjectivity of j* we saw above. First assume X is quasi-compact. Then
Zi(X) is a free Z-module with basis given by the elements [Z] where Z C X is
integral closed of §-dimension k. Such a basis element maps either to the basis
element [Z N U] of Z(U) or to zero if Z C Y. Hence the lemma is clear in this
case. The general case is similar and the proof is omitted. ([l

Lemma 10.3. In Situation let f: X — Y be an étale morphism of good
algebraic spaces over B. If Z C'Y is an integral closed subspace, then f*[Z] = >[Z']
where the sum is over the irreducible components (Remark of f~XZ).

Proof. The meaning of the lemma is that the coefficient of [Z’] is 1. This follows
from the fact that f~1(Z) is a reduced algebraic space because it is étale over the
integral algebraic space Z. O

Lemma 10.4. In Situation let X,Y,Z/B be good. Let f : X — Y and
g:Y — Z be flat morphisms of relative dimensions v and s over B. Then go f is
flat of relative dimension r + s and

[rog®=(g0f)
as maps Zk(Z) - Zk:+r+s(X)'

Proof. The composition is flat of relative dimension r + s by Morphisms of Spaces,
Lemmas and Suppose that
(1) AC Z is a closed integral subspace of d-dimension k,
(2) A’ C Y is a closed integral subspace of §-dimension k+s with A’ C g=1(A4),
and
(3) A” C Y is a closed integral subspace of d-dimension k + s + r with A” C
fF7Hw).
We have to show that the coefficient n of [A”] in (go f)*[A] agrees with the coefficient
m of [A”] in f*(g*[A]). We may choose a commutative diagram

U——V ——W

L

X—sY ——>7

where U, V,W are schemes, the vertical arrows are étale, and there exist points
u € U, v eV, we W such that u — v — w and such that u,v,w map to
the generic points of A” A’ A. (Details omitted.) Then we have flat local ring
homorphisms Oy, = Ov,y, Ov,, = Oy, and repeatedly using Lemma Fi;fl we
find
n = lengthouu (OU,u/mw(’)Uﬁu)
and
m = lengthy, (Ov,u/my,Ov,y)lengthy,  (Ovu/myOu,u)

Hence the equality follows from Algebra, Lemma O
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Lemma 10.5. In Situation let X,Y/B be good. Let f : X — Y be a flat
morphism of relative dimension r.

(1) Let Z CY be a closed subspace with dims(Z) < k. Then we have dims(f~1(Z))

k+r and [f~HD)ksr = [* 2]k in Zkir(X).
(2) Let F be a coherent sheaf on' Y with dims(Supp(F)) < k. Then we have
dimg (Supp(f*F)) < k+r and

FF e = [ Fletr
in Zitr(X).

Proof. Part (1) follows from part (2) by Lemma and the fact that f*Oy, =
Of*l(Z).
Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Spaces,
Lemma to see that F is of finite type, hence f*F is of finite type (Modules on
Sites, Lemma , hence f*F is coherent (Cohomology of Spaces, Lemma [12.2]
again). Thus the lemma makes sense. Let W C Y be an integral closed subspace of
d-dimension k, and let W’ C X be an integral closed subspace of dimension k + r
mapping into W under f. We have to show that the coefficient n of [W'] in f*[Fj
agrees with the coefficient m of [W'] in [f*F|gtr. We may choose a commutative
diagram

U——V

X ——Y
where U, V are schemes, the vertical arrows are étale, and there exist points u € U,
v € V such that u — v and such that u,v map to the generic points of W', W.
(Details omitted.) Consider the stalk M = (F|y), as an Oy ,-module. (Note that
M has finite length by our dimension assumptions, but we actually do not need to

verify this. See Lemma ) We have (f*F|u)u = Ovu ®oy,., M. Thus we see
that

n = lengthy, (Ovu®o,,M) and m = lengthy, (M)lengthe, (Ov.u/my,Ou.u)

Thus the equality follows from Algebra, Lemma [52.13 O

11. Push and pull
This section is the analogue of Chow Homology, Section

In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.

Lemma 11.1. In Situation let
Xl H[ X

1

| (A v

<
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be a fibre product diagram of good algebraic spaces over B. Assume f : X — Y
proper and g : Y' — Y flat of relative dimension r. Then also f' is proper and ¢’
is flat of relative dimension r. For any k-cycle o on X we have

g fra = fi(g’)*oz
in Zppr(Y').

Proof. The assertion that f’ is proper follows from Morphisms of Spaces, Lemma
40.3] The assertion that ¢’ is flat of relative dimension r follows from Morphisms
of Spaces, Lemmas and It suffices to prove the equality of cycles when
a = [W] for some integral closed subspace W C X of d-dimension k. Note that
in this case we have a@ = [Ow]k, see Lemma By Lemmas and it
therefore suffices to show that f1(¢')*Ow is isomorphic to g* fxOw . This follows
from cohomology and base change, see Cohomology of Spaces, Lemma [11.2 a

Lemma 11.2. In Situation let X,Y/B be good. Let f : X — Y be a finite
locally free morphism of degree d (see Morphisms of Spaces, Definition , Then
f is both proper and flat of relative dimension 0, and

foffa = da
for every a € Z(Y).

Proof. A finite locally free morphism is flat and finite by Morphisms of Spaces,
Lemma and a finite morphism is proper by Morphisms of Spaces, Lemma
We omit showing that a finite morphism has relative dimension 0. Thus the
formula makes sense. To prove it, let Z C Y be an integral closed subscheme of
d-dimension k. It suffices to prove the formula for o = [Z]. Since the base change
of a finite locally free morphism is finite locally free (Morphisms of Spaces, Lemma
we see that f,f*Oyz is a finite locally free sheaf of rank d on Z. Thus clearly
f«f*Oz has length d at the generic point of Z. Hence

[ f712) = £ £ Oz, = [fo 7 Oz]) = d[Z]
where we have used Lemmas and 0

12. Preparation for principal divisors

This section is the analogue of Chow Homology, Section Some of the material
in this section partially overlaps with the discussion in Spaces over Fields, Section

6l

Lemma 12.1. In Situation let X/B be good. Assume X is integral.

(1) If Z C X is an integral closed subspace, then the following are equivalent:
(a) Z is a prime divisor,
(b) |Z] has codimension 1 in |X|, and
(¢) dims(Z) = dimgs(X) — 1.

(2) If Z is an irreducible component of an effective Cartier divisor on X, then
dimg(Z) == dim5(X) —1.

Proof. Part (1) follows from the definition of a prime divisor (Spaces over Fields,
Definition [6.2), Decent Spaces, Lemma and the definition of a dimension
function (Topology, Definition [20.1).
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Let D C X be an effective Cartier divisor. Let Z C D be an irreducible component
and let £ € |Z] be the generic point. Choose an étale neighbourhood (U, u) — (X, &)
where U = Spec(A) and D x x U is cut out by a nonzerodivisor f € A, see Divisors
on Spaces, Lemma Then u is a generic point of V(f) by Decent Spaces,
Lemma Hence Oy, has dimension 1 by Krull’s Hauptidealsatz (Algebra,
Lemma [60.11). Thus £ is a codimension 1 point on X and Z is a prime divisor as
desired. (I

13. Principal divisors

This section is the analogue of Chow Homology, Section[17} The following definition
is the analogue of Spaces over Fields, Definition [6.7]in our current setup.

Definition 13.1. In Situation let X/B be good. Assume X is integral with
dims(X) =n. Let f € R(X)*. The principal divisor associated to f is the (n — 1)-
cycle

div(f) = divx(f) = > _ordz(f)[Z]

defined in Spaces over Fields, Definition This makes sense because prime
divisors have d-dimension n — 1 by Lemma [12.1

In the situation of the definition for f,g € R(X)* we have

divx (fg) = divx (f) + divx(g)

in Z,_1(X). See Spaces over Fields, Lemma The following lemma will allow
us to reduce statements about principal divisors to the case of schemes.

Lemma 13.2. In Situation let f: X — Y be an étale morphism of good
algebraic spaces over B. Assume Y is integral. Let g € R(Y)*. As cycles on X we
have

f*(divy (9)) = ZX, (X" = X).divx:(go flx)

where the sum is over the irreducible components of X (Remark .

Proof. The map |X| — |Y] is open. The set of irreducible components of |X|
is locally finite in |X|. We conclude that f|x : X’ — Y is dominant for every
irreducible component X’ C X. Thus g o f|x- is defined (Morphisms of Spaces,
Section [A7)), hence divx/(g o f|x/) is defined. Moreover, the sum is locally finite
and we find that the right hand side indeed is a cycle on X. The left hand side
is defined by Definition [I0.1] and the fact that an étale morphism is flat of relative
dimension 0.

Since f is étale we see that dx (z) = 6,(f(z)) for all z € | X|. Thus if dims(Y) = n,
then dims(X’) = n for every irreducible component X’ of X (since generic points
of X map to the generic point of Y, see above). Thus both left and right hand side
are (n — 1)-cycles.

Let Z C X be an integral closed subspace with dims(Z) = n — 1. To prove the
equality, we need to show that the coefficients of Z are the same. Let Z’ C Y be
the integral closed subspace constructed in Lemma Then dims(Z') = n—1
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too. Let £ € |Z| be the generic point. Then &' = f(§) € |Z’] is the generic point.
Consider the commutative diagram

Spec(@él(’g) —X
Spec(0%)) —=Y

of Decent Spaces, Remark We have to be slightly careful as the reduced
Noetherian local rings Ol}ﬂ& and O{L,yg, need not be domains. Thus we work with
total rings of fractions Q(—) rather than fraction fields. By definition, to get the
coefficient of Z’ in divy (g) we write the image of ¢ in Q(O?,,é,) as a/b with a,b €
(’);375, nonzerodivisors and we take

ordz/ (g) = lengtho;y (Oé‘/@,/a(’)?@) - lengthohl (O?/’E,/b(?)h/é,)

Observe that the coefficient of Z in f*divy (G) is the same integer, see Lemma
Suppose that £ € X’. Then we can consider the maps

h h h
Ong/ — Ox7§ — 0X/7§

The first arrow is flat and the second arrow is a surjective map of reduced local
Noetherian rings of dimension 1. Therefore both these maps send nonzerodivisors
to nonzerodivisors and we conclude the coefficient of Z’ in divx/ (g o f|x/) is

_ h h _ h h
OrdZ(g o f|X/) = lengthoi,)g (OX/,S/G’OX',f) lengthog)y (OX',g/bOX’,f)
by the same prescription as above. Thus it suffices to show

lengthO;y (O;l/é/ /aog/{/) = Z lengthogﬂf (OSL(/,E/QO?(’,E)

£EIX|

First, since the ring map (’){25, — Oé‘(,& is flat and unramified, we have
lengthpn (0% /aOY /) = lengthpn (O% ¢/aO% ¢)
Ve \TY, g %o . )

by Algebra, Lemma [52.13| Let q1,...,q: be the nonmaximal primes of (’)SL(_’5 and
set R; = Ogg’g/qj. For X’ as above, denote J(X’) C {1,...,t} the set of indices
such that q; corresponds to a point of X', ie., such that under the surjection

O%E — Ox ¢ the prime g; corresponds to a prime of Ox/ ¢. By Chow Homology,
Lemma [3.2] we get

lengthoké (Oﬁ(,g/aoég,g) = Zj lengthp (R;/aR;)

and

lengthoil’s (Oﬁg,yg/aoﬁ,,g) = Z lengthp (R;/aR;)

Thus the result of the lemma holds because {1,...,t} is the disjoint union of the
sets J(X'): each point of codimension 0 on X lies on a unique X'. (]

jeJ(X’)
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14. Principal divisors and pushforward

0EQ3 This section is the analogue of Chow Homology, Section

0EQ4 Lemma 14.1. In Situation let X,Y/B be good. Assume X, Y are integral
and n = dimg(X) = dims(Y). Letp: X — Y be a dominant proper morphism. Let
feR(X)*. Set
g = Nmgx)/rv)(f)-
Then we have pydiv(f) = div(g).

Proof. We are going to deduce this from the case of schemes by étale localization.
Let Z C Y be an integral closed subspace of d-dimension n — 1. We want to show
that the coefficient of [Z] in p.div(f) and div(g) are equal. Apply Spaces over
Fields, Lemma to the morphism p : X — Y and the generic point £ € |Z|.
We find that we may replace Y by an open subspace containing & and assume that
p: X — Y is finite. Pick an étale neighbourhood (V,v) — (Y,§) where V is an
affine scheme. By Lemma|10.3|it suffices to prove the equality of cycles after pulling
back to V. Set U =V xy X and consider the commutative diagram

U?X

0]

|/, v

Let V; C V, j = 1,...,m be the irreducible components of V. For each i, let
Uji, © = 1,...,n; be the irreducible components of U dominating V. Denote
pi; + Uji — Vj the restriction of p’ : U — V. By the case of schemes (Chow
Homology, Lemma [18.1)) we see that

Py xdive, ; (f5.4) = divy, (g5.4)

where f;; is the restriction of f to U;; and g;; is the norm of f;; along the finite
extension R(U;;)/R(V;). We have

b*pudivy (f) = pladivx (f)
=Pl (ZM(UN - U)*diVUj,i(fj,i))
=2 Vi o V)pjdive, (£4)
= Zj(Vj = V)« (Zl divy, (gj,i))
= Zj(Vj = V)udivy, (T 950

by Lemmas [I1.1] [[3:2] and 82} To finish the proof, using Lemma [13.2] again, it
suffices to show that
gobly, = 1_[Z 9j,i

as elements of the function field of V;. In terms of fields this is the following
statement: let L/K be a finite extension. Let M/K be a finite separable extension.
Write M @ L = [[M;. Then for t € L with images t; € M; the image of
Normy, /g (t) in M is [ Normyy, /ps(t;). We omit the proof. O
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15. Rational equivalence

This section is the analogue of Chow Homology, Section In this section we
define rational equivalence on k-cycles. We will allow locally finite sums of images
of principal divisors (under closed immersions). This leads to some pretty strange
phenomena (see examples in the chapter on schemes). However, if we do not allow
these then we do not know how to prove that capping with Chern classes of line
bundles factors through rational equivalence.

Definition 15.1. In Situationlet X/B be good. Let k € Z.

(1) Given any locally finite collection {WW; C X} of integral closed subspaces
with dims(W;) =k + 1, and any f; € R(W;)* we may consider

> (i5).div(f;) € Zi(X)
where i; : W; — X is the inclusion morphism. This makes sense as the
morphism []4; : [[W; — X is proper.
(2) We say that o € Z(X) is rationally equivalent to zero if a is a cycle of the
form displayed above.
(3) We say a,f € Zi(X) are rationally equivalent and we write @ ~y.q; S if
« — [ is rationally equivalent to zero.

(4) We define
CHk(X) = Zk(X)/ ~rat
to be the Chow group of k-cycles on X. This is sometimes called the Chow
group of k-cycles modulo rational equivalence on X.

There are many other interesting equivalence relations. Rational equivalence is the
coarsest of them all. A very simple but important lemma is the following.

Lemma 15.2. In Sz'tuatz'on let X/B be good. Let U C X be an open subspace.
LetY be the reduced closed subspace of X with |Y| = |X|\|U| and denotei:Y — X
the inclusion morphism. Let k € Z. Suppose o, 8 € Zx(X). If a|ly ~rar Blu then
there exist a cycle v € Zy(Y') such that

Q ~rat /B + Qs
In other words, the sequence
CHy(Y) —2> CHy(X) —— CH,(U) —=0
is an exact complex of abelian groups.

Proof. Let {W;},c; be a locally finite collection of integral closed subspaces of
U of o-dimension k + 1, and let f; € R(W;)* be elements such that (o — §)|y =
>(i5)«div(f;) as in the deﬁnltlon Let W C X be the corresponding integral closed
subspace of X, i.e., having the same generic point as Wj. Suppose that V C X
is a quasi-compact open. Then also V N U is quasi-compact open in U as V is
Noetherian. Hence the set {j € J | W; NV #0} = {j € J | W;NV # 0} is finite
since {W;} is locally finite. In other words we see that {IW/} is also locally finite.
Since R(W;) = R(W]) we see that

a—f— Z )«div(f;)
is a cycle on X whose restriction to U is zero. The lemma follows by applying
Lemma [10.2) O
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Remark| 15.3. In Situation let X/B be good. Suppose we have infinite
collections v, 3; € Z(X), i € I of k-cycles on X. Suppose that the supports of o;
and f; form locally finite collections of closed subsets of X so that > «; and > §;
are defined as cycles. Moreover, assume that a; ~,.q; §; for each i. Then it is not
clear that > «a; ~yqt > 8;. Namely, the problem is that the rational equivalences
may be given by locally finite families {W; ;, fi; € R(W; ;)*};cs, but the union
{Wi ;}ier,jes, may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {T;};cr
of | X| such that «a;,8; are supported on T; and such that a; ~.q: B; “on” T;.
More precisely, the families {W; ;, fi; € R(W; ;)*}jes, consist of integral closed
subspaces W, ; with |W; ;| C T;. In this case it is true that > a; ~pa > 5 on X,
simply because the family {W; ;}ier jes, is automatically locally finite in this case.

16. Rational equivalence and push and pull

This section is the analogue of Chow Homology, Section In this section we show
that flat pullback and proper pushforward commute with rational equivalence.

Lemmal 16.1. In Situation let X,Y/B be good. Assume Y integral with
dims(Y) =k. Let f : X — Y be a flat morphism of relative dimension r. Then for
g € R(Y)* we have

frdivy (g9) = mxr x (X' = X).divx: (g0 flx)

as (k+r —1)-cycles on X where the sum is over the irreducible components X' of
X and mx: x is the multiplicity of X" in X.

Proof. Observe that any irreducible component of X dominates Y (Lemma [9.1)

and hence the composition g o f|x/ is defined (Morphisms of Spaces, Section [47)).

We will reduce this to the case of schemes. Choose a scheme V and a surjective

étale morphism V' — Y. Choose a scheme U and a surjective étale morphism

U —V xy X. Picture

U——X
a

hJ/ f

vt

LN Ve

Since a is surjective and étale it follows from Lemma that it suffices to prove
the equality of cycles after pulling back by a. We can use Lemma [13.2] to write

b*divy (9) = > (V' = V).divy: (g0 blv)

where the sum is over the irreducible components V' of V. Using Lemma we
find

h*b*diVy(g) = Z(V’ xy U — U)*(h/)*diVV/(g o b|\//)
where b’/ : V' xy U — V' is the projection. We may apply the lemma in the case

of schemes (Chow Homology, Lemma [20.1]) to the morphism b’ : V' xy U — V' to
see that we have

(h/)*diVV/(g o b|v/) = ZmU’,V’XvU(UI — V/ Xy U)*diVU/(g o b|vl o h/‘U/)

where the sum is over the irreducible components U’ of V' xy, U. Each U’ occur-
ring in this sum is an irreducible component of U and conversely every irreducible
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component U’ of U is an irreducible component of V’ xy, U for a unique irreducible
component V’ C V. Given an irreducible component U’ C U, denote a(U’) C X
the “image” in X (Lemma . this is an irreducible component of X for example
by Lemma The muplticity my v/« v is equal to the multiplicity m———r aU.X"

This follows from the equality h*a*[Y] = b* f*[Y] (Lemma [10.4), the definitions,
and Lemma Combining all of what we just said we obtain

a* f*divy (g) = h*b*divy (g Zma(U (U = U).divy:(go (foa)|u)

Next, we analyze what happens with the right hand side of the formula in the
statement of the lemma if we pullback by a. First, we use Lemma to get

a* > mxs x (X' = X)udivy:(gof|x) =Y mxr x(X'xxU — U).(d')*divx/(gof|x)
where @’ : X’ xx U — X' is the projection. By Lemma we get
(@)divx:(go flx) =Y (U = X' xx U)udivyr(g o (f o a)|u)

where the sum is over the irreducible components U’ of X’ x x U. These U’ are
irreducible components of U and in fact are exactly the irreducible components of U
such that a(U’) = X’. Comparing with what we obtained above we conclude. [

0EQB Lemma 16.2. In Situation let X,Y/B be good. Let f : X — Y be a flat
morphism of relative dimension r. Let o ~y.qt B be rationally equivalent k-cycles
on'Y. Then f*a ~pat [*B as (k+71)-cycles on X.

Proof. What do we have to show? Well, suppose we are given a collection
i] : Wj —Y

of closed immersions, with each W; integral of J-dimension k 4 1 and rational
functions g; € R(W;)*. Moreover, assume that the collection {|¢;|(|W;|)}jes is
locally finite in |Y|. Then we have to show that

£ ijdivigy)) = D frij.div(g;)
is rationally equivalent to zero on X. The sum on the right makes sense by Lemma
9.2
Consider the fibre products
i Wi =W; xy X — X.

and denote f; : Wj' — W the first projection. By Lemma we can write the
sum above as

> i (F7div(g;))
By Lemma we see that each f;div(g;) is rationally equivalent to zero on W7.

Hence each i} , (f;div(g;)) is rationally equivalent to zero. Then the same is true
for the displayed sum by the discussion in Remark (Il

0EQC Lemmal 16.3. In Situation let X,Y/B be good. Letp: X — Y be a proper

morphism. Suppose o, 8 € Zy(X) are rationally equivalent. Then p.« is rationally
equivalent to p. .
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Proof. What do we have to show? Well, suppose we are given a collection
ij : Wj — X
of closed immersions, with each W; integral of J-dimension £ 4 1 and rational

functions f; € R(W;)*. Moreover, assume that the collection {i;(W;)} ;e is locally
finite on X. Then we have to show that

D (Z ij,*div(fj)>
is rationally equivalent to zero on X.

Note that the sum is equal to

> padjudiv(fy).

Let Wj’ C Y be the integral closed subspace which is the image of poi;, see Lemma
The collection {W} is locally finite in ¥ by Lemma Hence it suffices to
show, for a given j, that either p.i;.div(f;) = 0 or that it is equal to 4/ ,div(g;)
for some g; € R(W))*.

The arguments above therefore reduce us to the case of a since integral closed
subspace W C X of d-dimension &k + 1. Let f € R(W)*. Let W' = p(W) as above.
We get a commutative diagram of morphisms

W — X
p'l lp
Wy
Note that p,i.div(f) = i, (p)«div(f) by Lemma As explained above we have

to show that (p’).div(f) is the divisor of a rational function on W’ or zero. There
are three cases to distinguish.

The case dims(W’) < k. In this case automatically (p’).div(f) = 0 and there is
nothing to prove.

The case dimg(W') = k. Let us show that (p/).div(f) = 0 in this case. Since
(p')«div(f) is a k-cycle, we see that (p’).div(f) = n[W’] for some n € Z. In order
to prove that n = 0 we may replace W'’ by a nonempty open subspace. In particular,
we may and do assume that W’ is a scheme. Let n € W’ be the generic point. Let
K = k(n) = R(W’) be the function field. Consider the base change diagram

W, —— W

7

Spec(K) ——= W’

Observe that ¢ is proper. Also |W, | has dimension 1: use Decent Spaces, Lemma
to identify |IV,,| as the subspace of |W| of points mapping to  and note that
since dims(W) = k + 1 and d(n) = k points of W, must have J-value either k or
k 4+ 1. Thus the local rings have dimension < 1 by Decent Spaces, Lemma [20.2
By Spaces over Fields, Lemma we find that W, is a scheme. Since Spec(K) is
the limit of the nonempty affine open subschemes of W’ we conclude that we may
assume that W is a scheme by Limits of Spaces, Lemma Then finally by the
case of schemes (Chow Homology, Lemma we find that n = 0.
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The case dimg(W’) = k + 1. In this case Lemma applies, and we see that
indeed pldiv(f) = div(g) for some g € R(W')* as desired. O

17. The divisor associated to an invertible sheaf

This section is the analogue of Chow Homology, Section[24] The following definition
is the analogue of Spaces over Fields, Definition [7.4] in our current setup.

Definition 17.1. In Situation let X/B be good. Assume X is integral and
n = dims(X). Let £ be an invertible Ox-module.

(1) For any nonzero meromorphic section s of £ we define the Weil divisor
associated to s is the (n — 1)-cycle

divy(s) = Zordz,c(s)[z]

defined in Spaces over Fields, Definition [7.4] This makes sense because
WEeil divisors have §-dimension n — 1 by Lemma [12.1
(2) We define Weil divisor associated to L as

c1(L£) N [X] = class of divg(s) € CH,,—1(X)

where s is any nonzero meromorphic section of £ over X. This is well
defined by Spaces over Fields, Lemma [7.3]

The zero scheme of a nonzero section is an effective Cartier divisor whose Weil
divisor class computes the Weil divisor associated to the invertible module.

Lemmal 17.2. In Situation let X/B be good. Assume X is integral and
n = dims(X). Let L be an invertible Ox-module. Let s € I'(X, L) be a nonzero
global section. Then

dive (s) = [2(8)]n-1
in Zn—1(X) and

m CHn_l(X)

Proof. Let Z C X be an integral closed subspace of §-dimension n—1. Let £ € |Z|
be its generic point. To prove the first equality we compare the coefficients of Z on
both sides. Choose an elementary étale neighbourhood (U, u) — (X, &), see Decent
Spaces, Section [11{ and recall that (’)é}’{ = OZM in this case. After replacing U by
an open neighbourhood of u we may assume there is a trivializing section sy of
L|y. Write s|y = fsy for some f € T'(U,Oy). Then Z xx U is equal to V(f)
as a closed subscheme of U, see Divisors on Spaces, Definition As in Spaces
over Fields, Section [7] denote L¢ the pullback of £ under the canonical morphism
Cce : Spec(@é‘(’g) — X. Denote s¢ the pullback of sy; it is a trivialization of Le.
Then we see that cf(s) = fs¢. The coefficient of Z in [Z(s)],,—1 is by definition

lengthe,, , (Ov,u/fOuv.u)
Since Oy, — O?CE is flat and identifies residue fields this is equal to
1engtho§<,5 (Ogc,g/f(')g(,g)

by Algebra, Lemma [52.13] This final quantity is equal to ordz (s) by Spaces over
Fields, Definition [7.1} i.e., to the coefficient of Z in div,(s) as desired. O
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Lemmal 17.3. In Situation let X/B be good. Let L be an invertible Ox -
module. The morphism

. _ ®Rn
7S (@) —
has the following properties:
(1) q is surjective, smooth, affine, of relative dimension 1,
(2) there is an isomorphism « : ¢*L = Op,
(3) formation of (¢: T — X, «) commutes with base change,
(4) ¢* : Zp(X) = Zp41(T) is injective,
(5) if Z C X is an integral closed subspace, then q=1(Z) C T is an integral
closed subspace,
(6) if Z C X is a closed subspace of X of 6-dimension < k, then ¢~(Z) is a
closed subspace of T of 6-dimension < k + 1 and ¢*[Z|x = [¢7(Z)]ks1,
(7) if & € |T| is the generic point of the fibre of |T| — |X| over &, then the
Ting map (9%§ — (9%5, is flat, we have mé}, = m?@%,g,, and the residue
field extension is purely transcendental of transcendence degree 1, and
(8) add more here as needed.

Proof. Let U — X be an étale morphism such that L[y is trivial. Then Tx x U —
U is isomorphic to the projection morphism G,, x U — U, where G,, is the
multipliciative group scheme, see Groupoids, Example Thus (1) is clear.

To see (2) observe that ¢.¢*L = @,,c5 L2, Thus there is an obvious isomor-
phism ¢.q¢*L — ¢.Or of ¢.Opr-modules. By Morphisms of Spaces, Lemma
this determines an isomorphism ¢*£ — Op.

Part (3) holds because forming the relative spectrum commutes with arbitrary base
change and the same thing is clearly true for the isomorphism «.

Part (4) follows immediately from (1) and the definitions.

Part (5) follows from the fact that if Z is an integral algebraic space, then G, x Z
is an integral algebraic space.

Part (6) follows from the fact that lengths are preserved: if (A, m) is a local ring and
B = Alz]najy) and if M is an A-module, then length 4 (M) = lengthg(M ®4 B).
This implies that if F is a coherent Ox-module and £ € |X| with ¢ € |T| the
generic point of the fibre over £, then the length of F at £ is the same as the length
of ¢*F at ¢'. Tracing through the definitions this gives (6) and more.

The map in part (7) comes from Decent Spaces, Remark [11.11} However, in our
case we have

Spec(O% ¢) xx T = Gy, x Spec(O% ¢) = Spec(O% [t,t™'])

and &’ corresponds to the generic point of the special fibre of this over Spec(@% ¢)-
Thus (9%5, is the henselization of the localization of O;‘(’g[t, t~1] at the correspond-

ing primé. Part (7) follows from this and some commutative algebra; details omit-
ted. (]

Lemma 17.4. In Situation let X/B be good. Let L be an invertible Ox -
module. Assume X is integral. Let s be a monzero meromorphic section of L. Let
q:T — X be the morphism of Lemma[I7.3. Then

q" dive(s) = divr(q*(s))
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where we view the pullback q*(s) as a monzero meromorphic function on T using
the isomorphism q¢*L — Or

Proof. Observe that divy(¢*(s)) = dive, (¢*(s)) by the compatibility between
the constructions given in Spaces over Fields, Sections [6] and We will show
the agreement with dive,(¢*(s)) in this proof. We will use all the properties of
q: T — X stated in Lemma [I7.3] without further mention. Let Z C T be a prime
divisor. Then either Z — X is dominant or Z = ¢~1(Z’) for some prime divisor
7' ¢ X. If Z — X is dominant, then the coefficient of Z in either side of the
equality of the lemma is zero. Thus we may assume Z = ¢~ !(Z’) where Z' C X is
a prime divisor. Let &' € |Z'| and £ € |Z]| be the generic points. Then we obtain a
commutative diagram

Spec(@%vg) —T

3

| l

Spec((’)%f,) X

see Decent Spaces, Remark Choose a trivialization s¢: of L = ¢, L. Then
we can use the pullback s¢ of s¢ via h as our trivialization of L¢ = cgq*ﬁ. Write
s/sg = a/b for a,b € Ox ¢ nonzerodivisors. By definition the coefficient of Z’ in
div(s) is

lengthoi’gl (O§,§,/a0§g,£,) - lengtho?{ o ((’)é‘({,/b(’)%g,)

Since Z = ¢~ 1(Z'), this is also the coefficient of Z in ¢*div.(s). Since (9%’5, — O%’g
is flat the elements a, b map to nonzerodivisors in (9%5. Thus ¢*(s)/se = a/bin the
total quotient ring of O:};’f. By definition the coefficient of Z in divr(q*(s)) is

lengthey, (O ¢ /a0 o) — lengthey, (OF.¢/bO% )

The proof is finished because these lengths are the same as before by Algebra,
Lemma [52.13[ and the fact that mg = mg/ O%,é shown in Lemmam |

18. Intersecting with an invertible sheaf

This section is the analogue of Chow Homology, Section In this section we
study the following construction.

Definition 18.1. In Situation let X/B be good. Let £ be an invertible Ox-
module. We define, for every integer k, an operation
a1 (L)N—:Zp1(X) = CHi(X)

called intersection with the first Chern class of L.

(1) Given an integral closed subspace i : W — X with dims(W) = k+ 1 we
define

ci(£) N W] =iu(er (L) N [W])
where the right hand side is defined in Definition
(2) For a general (k4 1)-cycle a = " n;[W;] we set

all)na= Znicl (L) N [Wi]
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Write each ¢ (L) N W; = 7. n; ;[Z; ;] with {Z; ;}; a locally finite sum of integral
closed subspaces of W;. Since {W;} is a locally finite collection of integral closed
subspaces on X, it follows easily that {Z; ;}, ; is a locally finite collection of closed
subspaces of X. Hence ¢1(£) N =Y n;n; ;[Z; ;] is a cycle. Another, often more
convenient, way to think about this is to observe that the morphism [[W; —
X is proper. Hence ¢;(£) N« can be viewed as the pushforward of a class in
CHy (]I W;) = I CHx(W;). This also explains why the result is well defined up to
rational equivalence on X.

The main goal for the next few sections is to show that intersecting with c¢;(£)
factors through rational equivalence. This is not a triviality.

Lemma 18.2. In Situation let X/B be good. Let L, N be an invertible sheaves
on X. Then

all)Na+caN)Na=c (Lo, N)Na
in CHy(X) for every a € Z_1(X). Moreover, c1(Ox)Na =0 for all a.

Proof. The additivity follows directly from Spaces over Fields, Lemma[7.5|and the
definitions. To see that ¢1(Ox) N« = 0 consider the section 1 € T'(X,Ox). This
restricts to an everywhere nonzero section on any integral closed subspace W C X.
Hence ¢1(Ox) N [W] =0 as desired. O

Recall that Z(s) C X denotes the zero scheme of a global section s of an invertible
sheaf on an algebraic space X, see Divisors on Spaces, Definition [7.6

Lemmal 18.3. In Situation let Y/B be good. Let L be an invertible Oy -
module. Let s € T(Y, L) be a regular section and assume dims(Y) < k+ 1. Write
[Y]i+1 = D n;[Y;] where Y; CY are the irreducible components of Y of -dimension
k+1. Set s; = s|y, € T(Yi, L]y,). Then

(18.3.1) [Z(s)lk = >_ nalZ(si)]k
as k-cycles on'Y .

Proof. Let ¢ : V. — Y be a surjective étale morphism where V is a scheme. It
suffices to prove the equality after pulling back by ¢, see Lemma [I0.3] That same
lemma tells us that ¢*[Y;] = [~ 1(Yi)] = Y_[Vi;] where V;; are the irreducible
components of V' lying over Y;. Hence if we first apply the case of schemes (Chow
Homology, Lemma 25.3) to ¢*s; on Y; xy V we find that o*[Z(s;)]x = [Z(¢*s;)] =
> [Z(si,j)]k where s; ; is the pullback of s to V; ;. Applying the case of schemes to
p*s we get

O 1Z(3)lk = [Z(9" )]k = D> milZ(si )k

by our remark on multiplicities above. Combining all of the above the proof is
complete. |

The following lemma is a useful result in order to compute the intersection product
of the ¢; of an invertible sheaf and the cycle associated to a closed subscheme.
Recall that Z(s) C X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition [14.8


https://stacks.math.columbia.edu/tag/0EQK
https://stacks.math.columbia.edu/tag/0EQL

0EQN

0EQP

0EQQ

CHOW GROUPS OF SPACES 26

Lemma|18.4. In Situation let X/ B be good. Let L be an invertible O x -module.
Let Y C X be a closed subscheme with dims(Y) < k41 and let s € T(Y, L|y) be a
regular section. Then

(L) N Yk = [Z(s)]
in CHp(X).

Proof. Write

k+1 Z nl
where Y; C Y are the irreducible components of Y of d-dimension k+1 and n; > 0.
By assumption the restriction s; = s|y, € I'(Y;, L|y;) is not zero, and hence is a
regular section. By Lemma we see that [Z(s;)]r represents ¢1(L]|y;). Hence by

definition
C1 ( k:+1 Z nz
Thus the result follows from Lemma 183 O

19. Intersecting with an invertible sheaf and push and pull

This section is the analogue of Chow Homology, Section[26] In this section we prove
that the operation ¢;(£) N — commutes with flat pullback and proper pushforward.

Lemmal 19.1. In Situation let X,Y/B be good. Let f : X — Y be a flat
morphism of relative dimension r. Let L be an invertible sheaf on' Y. Assume Y is
integral and n = dims(Y'). Let s be a nonzero meromorphic section of L. Then we
have

[ dive (s Z n;divec) . (si)

in Zpir—1(X). Here the sum is over the irreducible components X; C X of -
dimension n + 1, the section s; = f|%,(s) is the pullback of s, and n; = mx, x is
the multiplicity of X; in X.
Proof. Using sleight of hand we will deduce this from Lemma (An alternative
is to redo the proof of that lemma in the setting of meromorphic sectlons of invertible
modules.) Namely, let ¢ : ' — Y be the morphism of Lemma constructed using
L on Y. We will use all the properties of T stated in this lemma. Consider the
fibre product diagram

T/ H]' X

q

hl if

T 1oy
Then ¢’ : T — X is the morphism constructed using f*£ on X. Then it suffices
to prove

(¢)" frdive(s an )idivyeg)y (s:)

Observe that T} = ¢~ 1(X;) are the irreducible components of 7" and that n; is the
multiplicity of 7] in T”. The left hand side is equal to

h*q*dive(s) = h*divr(q*(s))
by Lemma [I7.4] (and Lemma [10.4). On the other hand, denoting ¢] : T/ — X; the
restriction of ¢ we find that Lemma [17.4] also tells us the right hand blde is equal

to
> nadive, ((¢7)7 (54))
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In these two formulas the expressions ¢*(s) and (¢})*(s;) represent the rational func-
tions corresponding to the pulled back meromorphic sections of ¢* £ and (¢})* f*L| x,
via the isomorphism « : ¢*£ — Op and its pullbacks to spaces over T. With this
convention it is clear that (¢})*(s;) is the composition of the rational function ¢*(s)
on T and the morphism h|Ti’ : T/ — T. Thus Lemma exactly says that

h*divr(q*(s)) = > nidive, ((¢])*(s:))
as desired. [l

Lemmal 19.2. [In Situation let X,Y/B be good. Let f : X — Y be a flat
morphism of relative dimension r. Let L be an invertible sheaf on Y. Let o be a
k-cycle on' Y. Then

flaf)na) =al(f*L)nfra
n CH]C_HA_l(X).

Proof. Write o = > n;[W;]. We will show that
fre(L)nWi]) = er(f7L) 0 [ W]

in CHy,._1(X) by producing a rational equivalence on the closed subspace f~*(W;)
of X. By the discussion in Remark this will prove the equality of the lemma
is true.

Let W C Y be an integral closed subspace of d-dimension k. Consider the closed
subspace W’ = f~1(W) = W xy X so that we have the fibre product diagram

W —— X

Viv B il/f

We have to show that f*(ci(£) N [W]) = c1(f*L£) N f*[W]. Choose a nonzero
meromorphic section s of L|y. Let W/ C W' be the irreducible components of
d-dimension k + r. Write [W']iq, = > n;[W/] with n; the multiplicity of W/ in
W' as per definition. So f*[W] = Y n;[W/] in Zy1,(X). Since each W/ — W is
dominant we see that s; = S|W{ is a nonzero meromorphic section for each i. By
Lemma [T9.1] we have the following equality of cycles

h*diVL|W (S) = Z nidivf*mw( (S,)

in Zyyr—1(W'). This finishes the proof since the left hand side is a cycle on W’
which pushes to f*(¢1(£) N[W]) in CHgyr—1(X) and the right hand side is a cycle
on W’ which pushes to ¢1(f*£) N f*[W] in CHyyr—1(X). O

Lemma 19.3. In Situation let X,Y/B be good. Let f : X — Y be a proper
morphism. Let L be an invertible sheaf on'Y . Assume X, Y integral, f dominant,
and dims(X) = dims(Y). Let s be a nonzero meromorphic section s of L on'Y.
Then

fo (divp=£(f*s)) = [R(X) : R(Y)]dive(s).
as cycles on Y. In particular

fled(fFL) N [X]) = er(£) N LY.
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Proof. The last equation follows from the first since f.[X] = [R(X) : R(Y)][Y] by
definition. Proof of the first equaltion. Let ¢ : T'— Y be the morphism of Lemma
[I7.3] constructed using £ on Y. We will use all the properties of T' stated in this
lemma. Consider the fibre product diagram

T/HI'X

q
hl if
71y

Then ¢’ : T" — X is the morphism constructed using f*£ on X. It suffices to prove
the equality after pulling back to T”. The left hand side pulls back to

" fo (divyc(f*s)) = halg") " divyc(f"s)
= h*diV(q/)* f*,;((q')*f*s)
= hodivpegec(h*¢"s)

The first equality by Lemma [11.1] The second by Lemma using that T is
integral. The third because the displayed diagram commutes. The right hand side
pulls back to

[R(X) : R(Y)]q"dive(s) = [R(T") : R(T)]divg-£(q"s)

This follows from Lemma [19.1} the fact that T is integral, and the equality [R(T") :
R(T)] = [R(X) : R(Y')] whose proof we omit (it follows from Lemma [I1.1]but that
would be a silly way to prove the equality). Thus it suffices to prove the lemma
for h : T — T, the invertible module ¢* and the section ¢*s. Since ¢*L£ = Or we
reduce to the case where £ = O discussed in the next paragraph.

Assume that £ = Oy. In this case s corresponds to a rational function g € R(Y).
Using the embedding R(Y') C R(X) we may think of g as a rational on X and we
are simply trying to prove

fe (divx (g)) = [R(X) : R(Y)]divy (g).
Comparing with the result of Lemma we see this true since Nmpgx)/r(v)(9) =
gEEIEN] a5 g € R(Y)*. O

Lemma 19.4. In Situatz'on let X,Y/B be good. Letp: X — Y be a proper
morphism. Let o € Zy41(X). Let L be an invertible sheaf on' Y. Then

pe(c1(p™L)Na) =c1(L) Np.a

Proof. Suppose that p has the property that for every integral closed subspace
W C X the map plw : W — Y is a closed immersion. Then, by definition of
capping with ¢;(£) the lemma holds.

We will use this remark to reduce to a special case. Namely, write a = > n;[W;]
with n; # 0 and W, pairwise distinct. Let W/ C Y be the “image” of W; as in
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Lemma [7.1] Consider the diagram
X =W, —— X

Y =W —1>vY.

K2

Since {W; } is locally finite on X, and p is proper we see that {W/} is locally finite on
Y and that g, ¢, p’ are also proper morphisms. We may think of > n;[W;] also as a
k-cycle o € Z(X'). Clearly g.o/ = a. We have ¢.(c1(¢*p*L)Na’) = ¢1(p*L)Ngsc
and (¢)«(c1((¢)*L) Npla’) = c1(L) N ¢lp..a’ by the initial remark of the proof.
Hence it suffices to prove the lemma for the morphism p’ and the cycle > n;[W;].
Clearly, this means we may assume X, Y integral, f : X — Y dominant and
o = [X]. In this case the result follows from Lemma [19.3] O

20. The key formula

This section is the analogue of Chow Homology, Section We strongly urge the
reader to read the proof in that case first.

In Situation let X/B be good. Assume X is integral and dims(X) = n. Let
L and N be invertible O x-modules. Let s be a nonzero meromorphic section of £
and let ¢ be a nonzero meromorphic section of N'. Let Z C X be a prime divisor
with generic point £ € |Z|. Consider the morphism
ce Spec(@él%) — X

used in Spaces over Fields, Section[7] We denote £¢ and N¢ the pullbacks of £ and
N by c¢; we often think of £¢ and N¢ as the rank 1 free Oﬁyg—modules they give
rise to. Note that the pullback of s, resp. ¢ is a regular meromorphic section of L,
resp. Ne.

Let Z; C X, i € I be a locally finite set of prime divisors with the following
property: If Z ¢ {Z;}, then s is a generator for £¢ and t is a generator for N.
Such a set exists by Spaces over Fields, Lemma Then

dive(s) =Y _ordg, £(s)[Zi]
and similarly

diva(t) = Z ordz, n(t)[Zi]
Unwinding the definitions more, we pick for each i generators s; € L, and t; € N,
where ; is the generic point of Z;. Then we can write

s = fisi and t= gltz
with f;, g; invertible elements of the total ring of fractions Q(Og(&) We abbreviate
B; = (9}751_. Let us denote
ordp, : Q(B;)* — Z, a/b+— lengthy (B;/aB;) — lengthy (B;/bB;)

In other words, we temporarily extend Algebra, Definition [121.2] to these reduced
Noetherian local rings of dimension 1. Then by definition

ordyz, »(s) = ordp,(f;) and ordz, x(t) = ordg,(g;)

Since &; is the generic point of Z; we see that the residue field x(¢;) is the function
field of Z;. Moreover k(&;) is the residue field of B;, see Decent Spaces, Lemma
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11.10l Since ¢; is a generator of Mg, we see that its image in the fibre N, ®@p, (&)
is a nonzero meromorphic section of N|z,. We will denote this image ¢;|z,. From
our definitions it follows that

c1(N) Ndive(s) =Y ordp, (f:)(Zi — X).divyy,, (t;
and similarly
(L) Ndivar(t) = ZordBi (9:)(Zi = X)adivey, (s

in CH,,_2(X). We are going to find a rational equivalence between these two cycles.
To do this we consider the tame symbol

9p,(fi,9:) € K(&)" = R(Z)"
see Chow Homology, Section

Zi)

Zi)

Lemma 20.1 (Key formula). In the situation above the cycle

> (2 = X). (ordBi (f:)divn, (¢

is equal to the cycle

Zi) - OrdBi (gi)divﬁlzi (Si

2))

Z(Zl — X)* div(&Bi (fz, gi))

Proof. The strategy of the proof will be: first reduce to the case where £ and N
are trivial invertible modules, then change our choices of local trivializations, and
then finally use étale localization to reduce to the case of schemed'}

First step. Let ¢ : T'— X be the morphism constructed in Lemma, We will
use all properties stated in that lemma without further mention. In particular,
it suffices to show that the cycles are equal after pulling back by ¢. Denote s’
and t’ the pullbacks of s and ¢ to meromorphic sections of ¢*£ and ¢*A. Denote
Z! = q71(Z;), denote & € |Z!| the generic point, denote B = O%E;’ denote L
and N the pullbacks of £ and N to Spec(B;). Recall that we have commutative
diagrams

Spec(B}) — T
L
Spec(B;) X

see Decent Spaces, Remark|11.11} Denote s} and ¢, the pullbacks of s; and ¢; which
are generators of L¢ and /\/‘5/ Then we have

r el ) )
s = f;s; and t =gt;

where f/ and ¢, are the images of f;, g; under the map Q(B;) — Q(B}) induced by
B; — B]. By Algebra, Lemma [52.13| we have

ordg,(f;) = ordp(f;) and ordp,(g;) = ordp(g;)
By Lemma applied to ¢ : Z! — Z; we have

¢ divy,, (tilz,) = divgn, (tilz) and  ¢"dive, (silz) = divggy,, (il2;)

1t is possible that a shorter proof can be given by immediately applying étale localization.
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This already shows that the first cycle in the statement of the lemma pulls back to
the corresponding cycle for s',t', Z], s, t;. To see the same is true for the second,

note that by Chow Homology, Lemma we have
Op,(fi:g:) = Op;(fi,9i) via k(&) — k(&)
Hence the same lemma as before shows that
q"div(9p, (fi, 9:)) = div(9p;(f;, 7))

Since ¢*L = Op we find that it suffices to prove the equality in case £ is trivial.
Exchanging the roles of £ and A/ we see that we may similarly assume N is trivial.
This finishes the proof of the first step.

Second step. Assume £ = Ox and N/ = Ox. Denote 1 the trivializing section of L.
Then s; = u - 1 for some unit v € B;. Let us examine what happens if we replace
s; by 1. Then f; gets replaced by wf;. Thus the first part of the first expression of
the lemma is unchanged and in the second part we add

ordp, (g;)div(u|z,)

where u|z, is the image of u in the residue field by Spaces over Fields, Lemma
and in the second expression we add

div(0p, (u, gi))

by bi-linearity of the tame symbol. These terms agree by the property of the tame
symbol given in Chow Homology, Equation @

Let Y C X be an integral closed subspace with dims(Y) = n — 2. To show that
the coefficients of Y of the two cycles of the lemma is the same, we may do a
replacement of s; by 1 as in the previous paragraph. In exactly the same way one
shows that we may do a replacement of ¢; by 1. Since there are only a finite number
of Z; such that Y C Z; we may assume s; = 1 and ¢; = 1 for all these Z;.

Third step. Here we prove the coefficients of Y in the cycles of the lemma agree for
an integral closed subspace Y with dims(Y) = n — 2 such that moreover £ = Ox
and N = Ox and s; = 1 and t; = 1 for all Z; such that Y C Z;. After replacing X
by a smaller open subspace we may in fact assume that s; and ¢; are equal to 1 for
all . In this case the first cycle is zero. Our task is to show that the coefficient of
Y in the second cycle is zero as well.

First, since £ = Ox and N' = Ox we may and do think of s, ¢ as rational functions
f,g on X. Since s; and t; are equal to 1 we find that f;, resp. g; is the image of
f, resp. g in Q(B;) for all i. Let ¢ € |Y| be the generic point. Choose an étale
neighbourhood

(U, u) — (X, )

and denote Y’ = m C U. Since an étale morphism is flat, we can pullback f and
g to regular meromorphic functions on U which we will also denote f and g. For
every prime divisor Y C Z C X the scheme Z x x U is a union of prime divisors
of U. Conversely, given a prime divisor Y’ C Z’ C U, there is a prime divisor
Y C Z C X such that Z’ is a component of Z x x U. Given such a pair (Z, Z') the
ring map

Ok ¢ = Ol e
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is étale (in fact it is finite étale). Hence we find that
8(95’@(]29) = 30;;_5,(fa g9) via k(&) = k(¢)
by Chow Homology, Lemma Thus Lemma applies to show
(Z xx U= 2)"divz(9or, (f,9) =) y 4z or  (f.9)

Since flat pullback commutes with pushforward along closed immersions (Lemma
111.1]) we see that it suffices to prove that the coefficient of Y’ in

Y 2 = U)udivz (9o (f.9))

Z'CZX x

is zero.

Let A = Oy,. Then f,g € Q(A)*. Thus we can write f = a/b and g = ¢/d with
a,b,c,d € A nonzerodivisors. The coefficient of Y’ in the expression above is

ZqCA height 1 OrdA/q(aAq (f,9))

By bilinearity of 04 it suffices to prove

chA height 1 ord/q(9a,(a,c))

is zero and similarly for the other pairs (a,d), (b,¢), and (b,d). This is true by
Chow Homology, Lemma (6.2 O

21. Intersecting with an invertible sheaf and rational equivalence

This section is the analogue of Chow Homology, Section Applying the key
lemma we obtain the fundamental properties of intersecting with invertible sheaves.
In particular, we will see that ¢;(£) N — factors through rational equivalence and
that these operations for different invertible sheaves commute.

Lemma 21.1. In Sz’tuatz’on let X/ B be good. Assume X integral and dims(X) =
n. Let L, N be invertible on X. Choose a nonzero meromorphic section s of L and
a nonzero meromorphic section t of N'. Set a = dive(s) and 8 = divy(t). Then

aMNa=ca(L)Nps
mn CHn,Q(X) .
Proof. Immediate from the key Lemma [20.1) and the discussion preceding it. [

Lemma 21.2. In Situation let X/B be good. Let L be invertible on X. The
operation o ¢1(L) N« factors through rational equivalence to give an operation

Cl([,) n—: CH}C+1(X) — CHk(X)

Proof. Let o € Zj,41(X), and & ~q¢ 0. We have to show that ¢;(£)Na as defined
in Definition [I8.] is zero. By Definition [I5.]] there exists a locally finite family
{W;} of integral closed subspaces with dims(W;) = k + 2 and rational functions
fj € R(W;)* such that
a =Y (ij)divw, (f;)

Note that p : [[W; — X is a proper morphism, and hence a = p.a’ where o' €
Zy11(II Wj) is the sum of the principal divisors divyy, (f;). By Lemma we have
c1(L)Na = py(c1(p*L)Na’). Hence it suffices to show that each ¢ (£|w, ) Ndivyy, (f;)
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is zero. In other words we may assume that X is integral and o = divx (f) for some
feRX).

Assume X is integral and o = divx(f) for some f € R(X)*. We can think of
f as a regular meromorphic section of the invertible sheaf ' = Ox. Choose a
meromorphic section s of £ and denote § = div.(s). By Lemma we conclude
that

Cl(ﬁ) Na = Cl(OX) ﬂ,@.
However, by Lemma we see that the right hand side is zero in CHy(X) as
desired. ]

In Situation 2.1]let X/B be good. Let £ be invertible on X. We will denote
Cl([,)s n—: CHk+S(X) — CHk(X)

the operation ¢; (£)N—. This makes sense by Lemma[21.2] We will denote c¢1(£5N—
the s-fold iterate of this operation for all s > 0.

Lemmal 21.3. In Situation let X/B be good. Let L, N be invertible on X.
For any a € CHy42(X) we have

alL)naWN)Nna=cWN)Ne(L)Na
as elements of CH(X).

Proof. Write a = > m;[Z;] for some locally finite collection of integral closed
subspaces Z; C X with dims(Z;) = k + 2. Consider the proper morphism p :
[1Z; = X. Set o/ =) m;[Z;] as a (k+ 2)-cycle on [[ Z;. By several applications
of Lemma we see that ¢1(£) Ner(NV) N = pu(e1(p*L) Ner(p*N) N ') and
aWN)Nea(l)Na = peaa(p*N)Ne(p*L) Na’). Hence it suffices to prove the
formula in case X is integral and o = [X]. In this case the result follows from
Lemma 21.7] and the definitions. O

22. Intersecting with effective Cartier divisors

This section is the analogue of Chow Homology, Section Please read the intro-
duction of that section we motivation.

Recall that effective Cartier divisors correspond 1-to-1 to isomorphism classes of
pairs (£, s) where £ is an invertible sheaf and s is a global section, see Divisors on
Spaces, Lemma [7.8] If D corresponds to (L, s), then £ = Ox (D). Please keep this
in mind while reading this section.

Definition 22.1. In Situationlet X/B be good. Let (£, s) be a pair consisting
of an invertible sheaf and a global section s € I'(X,£). Let D = Z(s) be the
vanishing locus of s, and denote i : D — X the closed immersion. We define, for
every integer k, a (refined) Gysin homomorphism

T Zk+1(X) — CHk(D)
by the following rules:

(1) Given a integral closed subspace W C X with dims(W) = k + 1 we define
(a) if W ¢ D, then *[W] = [D N W], as a k-cycle on D, and
(b) if W C D, then i*[W] = i (c1(L]w) N [W]), where ¢/ : W — D is the
induced closed immersion.
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(2) For a general (k+ 1)-cycle o = )" n;[W;] we set

i*a = Z nji* [WJ]

(3) If D is an effective Cartier divisor, then we denote D - a = i.i*« the
pushforward of the class to a class on X.

In fact, as we will see later, this Gysin homomorphism i* can be viewed as an
example of a non-flat pullback. Thus we will sometimes informally call the class
1"« the pullback of the class a.

Remark|22.2. Let S, B, X, L, s,i: D — X beasin Deﬁnition@and assume
that £|p = Op. In this case we can define a canonical map i* : Zy11(X) = Zp(D)
on cycles, by requiring that i*[WW] = 0 whenever W C D. The possibility to do this
will be useful later on.

Remark| 22.3. Let f: X’ — X be a morphism of good algebraic spaces over B
as in Situation Let (£,s,i: D — X) be a triple as in Definition [22.1] Then we
can set L' = f*L, s’ = f*s,and D' = X' xx D = Z(s'). This gives a commutative
diagram

D' —— X'
|
D—>X
and we can ask for various compatibilities between ¢* and (i')*.
Lemma 22.4. In Situation let X/B be good. Let (L,s,i: D — X) be as in

Definition[22.1l Let « be a (k+1)-cycle on X. Then ivi*a = ¢1(L)Na in CHE(X).
In particular, if D is an effective Cartier divisor, then D - a = ¢1(Ox (D)) Na.

Proof. Write o = > n;[W,]| where i; : W; — X are integral closed subspaces
with dims(W;) = k. Since D is the vanishing locus of s we see that D N W} is the
vanishing locus of the restriction s|y,. Hence for each j such that W; ¢ D we have
c1(L) N [W;] = [D N W] by Lemma So we have

cl(ﬁ)ﬂazz

in CHy,(X) by Definition [I8.1] The right hand side matches (termwise) the push-
forward of the class i*« on D from Definition 22.31 Hence we win. O

W,z D n; [D N W]]k + ZWjCD njlj,*(cl(£)|W_7) N [WJ])

Lemma 22.5. In Situation|2.1. Let f : X' — X be a proper morphism of good
algebraic spaces over B. Let (L,s,i: D — X) be as in Definition m Form the
diagram

D/ ﬁX’
oyl

as in Remark[22.3 For any (k + 1)-cycle o’ on X' we have i* foo/ = g.(i')*a/ in
CHy(D) (this makes sense as f« is defined on the level of cycles).
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Proof. Suppose o = [IW’] for some integral closed subspace W/ C X'. Let W C X
be the “image” of W' as in Lemma [7.1} In case W/ ¢ D', then W ¢ D and we see
that
(W' N D)y =divey, (s'lws) and [W N D] =divgy, (slw)

and hence f, of the first cycle equals the second cycle by Lemma Hence the
equality holds as cycles. In case W/ C D', then W C D and f.(c1(Llw+) N [W'])
is equal to ¢1(L]w) N [W] in CHi (W) by the second assertion of Lemma By
Remark the result follows for general . O

Lemma 22.6. In Situation . Let f: X' — X be a flat morphism of relative
dimension r of good algebraic spaces over B. Let (L,s,i : D — X) be as in
Definition[22.1 Form the diagram

D/ﬁ,'X/
)l
D—o X

as in Remark [22.5 For any (k + 1)-cycle a on X we have (/)" f*a = g*i*a’ in
CHgyr (D) (this makes sense as f* is defined on the level of cycles).

Proof. Suppose o = [W] for some integral closed subspace W C X. Let W' =
W) cC X'. In case W ¢ D, then W’ ¢ D’ and we see that

W' nD =g Y(WnD)

as closed subspaces of D’. Hence the equality holds as cycles, see Lemma
In case W C D, then W’ C D’ and W' = g=}(W) with [W']gs14, = g*[W] and
equality holds in CHgy,(D’) by Lemma m By Remark the result follows
for general «/'. d

Lemma 22.7. In Situation let X/B be good. Let (L,s,i: D — X) be as in
Definition|22.1l Let Z C X be a closed subscheme such that dims(Z) < k+1 and
such that DN Z is an effective Cartier divisor on Z. Then i*([Z]k+1) = [D N Z]i.

Proof. The assumption means that s|z is a regular section of £|z. Thus DNZ =
Z(s) and we get
as cycles where s; = s|z,, the Z; are the irreducible components of 6-dimension k+1,

and [Z]g41 = Y. ni[Z;]. See Lemma [18.3] We have DN Z; = Z(s;). Comparing
with the definition of the gysin map we conclude. (Il

23. Gysin homomorphisms

This section is the analogue of Chow Homology, Section In this section we
use the key formula to show the Gysin homomorphism factor through rational
equivalence.

Lemma 23.1. In Situation let X/B be good. Assume X integral and n =
dims(X). Leti: D — X be an effective Cartier divisor. Let N' be an invertible
Ox-module and let t be a nonzero meromorphic section of N'. Then i*divy (t) =

Cl(N) N [-D]n—l m CHn_Q(D)
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Proof. Write diva(t) = > ordz, or(t)[Z;] for some integral closed subspaces Z; C
X of 6-dimension n — 1. We may assume that the family {Z;} is locally finite,
that ¢t € T'(U,N|y) is a generator where U = X \ |J Z;, and that every irreducible
component of D is one of the Z;, see Spaces over Fields, Lemmas and

Set L = Ox (D). Denote s € I'(X,O0x (D)) = I'(X, £) the canonical section. We
will apply the discussion of Section [20] to our current situation. For each i let
& € |Z;| be its generic point. Let B; = (’)é}@_. For each i we pick generators s;
of L¢, and t; of N, over B; but we insist that we pick s; = s if Z; ¢ D. Write
s = f;s; and t = g;t; with f;, g; € B;. Then ordz, »(t) = ordp,(g;). On the other
hand, we have f; € B; and

[D]n—1 = ZordBi(fi)[Zi}
because of our choices of s;. We claim that
i*divar(t) = Y _ordp, (g:)dive), (silz,)

as cycles. More precisely, the right hand side is a cycle representing the left
hand side. Namely, this is clear by our formula for diva(¢) and the fact that

divz), (silz,) = [Z(silz,)ln—2 = [Zi N D]n—2 when Z; ¢ D because in that case
Silz, = 8|z, is a regular section, see Lemma Similarly,

Cl(N) N [D]’Vl—l = Z OrdBi (fl)dlv./\/.\zl (tl|Z1)
The key formula (Lemma gives the equality
> (ordp, (fi)divan,, (t 2)) = Y divz, (95, (fir9:)

of cycles. If Z; ¢ D, then f; = 1 and hence divg, (0B, (fi,9:)) = 0. Thus we
get a rational equivalence between our specific cycles representing i*divas(t) and
c1(NM) N [D],—1 on D. This finishes the proof. O

Zq‘,) - Orqu‘, (gi)divﬁlzi (SZ

Lemma 23.2. In Situation let X/B be good. Let (L,s,i: D — X) be as in
Definition[22.1, The Gysin homomorphism factors through rational equivalence to
give a map i* : CHp41(X) — CHg(D).

Proof. Let a € Zi11(X) and assume that o ~,.q; 0. This means there exists a
locally finite collection of integral closed subspaces W; C X of §-dimension k + 2
and f; € R(W;)* such that o = > 4; .divwy, (f;). Set X’ = [[ W; and consider the
diagram

D/ H/ XI

Do x
of Remark Since X’ — X is proper we see that i*p, = ¢.(¢')* by Lemma
As we know that ¢, factors through rational equivalence (Lemma [16.3)), it suffices

to prove the result for o/ =) divyy, (f;) on X’. Clearly this reduces us to the case
where X is integral and « = div(f) for some f € R(X)*.

Assume X is integral and « = div(f) for some f € R(X)*. If X = D, then we see
that i*a is equal to ¢1(£) Na. This is rationally equivalent to zero by Lemma
If D # X, then we see that i*divx (f) is equal to ¢;(Op) N [D],—1 in CHx(D) by
Lemma Of course capping with ¢;(Op) is the zero map. O
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Lemma 23.3. In Situatio let X/B be good. Let (L,s,i: D — X) be a triple
as in Definition [22.1 Let N be an invertible Ox-module. Then i*(c1(N) Na) =
c1(i*N) Ni*a in CHg_o(D) for all « € CHi(Z).

Proof. With exactly the same proof as in Lemma this follows from Lemmas

19.4] R1.3] and 231} (]

Lemma 23.4. In Situation |2.1| let X/B be good Let (L,s,9: D — X) and
(L', 8,7 : D — X) be two tmples as in Definition . Then the diagram

CHy(X) CHg-1(D)

o T

CHy_1(D') ——= CHy_2(D N D")
commutes where each of the maps is a gysin map.

Proof. Denote j: DN D’ — D and j' : DN D' — D' the closed immersions cor-
responding to (£|pr, s|ps and (L, s|p). We have to show that (j')*i*a = 7%(i')*«
for all @« € CHg(X). Let W C X be an integral closed subscheme of dimension k.
We will prove the equality in case a = [W]. The general case will then follow from
the observation in Remark (and the specific shape of our rational equivalence

produced below). We will deduce the equality for & = [WW] from the key formula.

We let o be a nonzero meromorphic section of L]y which we require to be equal
to slw if W ¢ D. We let ¢/ be a nonzero meromorphic section of £’'|y which we
require to be equal to §'|y if W ¢ D’. Write

divgy, (o Zordz £|W an

and similarly

diV£/| ZOI‘dZ [y‘w Zn

as in the discussion in Section Then we see that Z; C D if n; #0 and Z! C D’
if n} # 0. For each i, let & € |Z;| be the generic point. As in Section [20| we choose
for each 7 an element o; € L,, resp. 0; € Ly, which generates over B; = (’){,L[,’éi and
which is equal to the image of s, resp. s’ if Z; ¢ D, resp. Z; ¢ D'. Write o0 = f;0;
and o' = flol so that n; = ordp,(f;) and n) = ordB (f]). From our definitions it
follows that

()W ZordBl f,)dlvmz (ol z,)
as cycles and
Z ordp, (f;)dive,, (oi
The key formula (Lemma now gives the equality

>~ (ords, (fi)diver,, (01l2,) = ordp, (F)divey,, (0i]2)) = Y diva, (96, (fi, 1))

of cycles. Note that divz, (9p,(fi, f1)) = 0if Z; ¢ DN D’ because in this case either
fi=1or f/ = 1. Thus we get a rational equivalence between our specific cycles
representing (j/)*¢*[W] and 7*(¢')*[W]on DN D' NW. O

)
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24. Relative effective Cartier divisors

This section is the analogue of Chow Homology, Section Relative effective
Cartier divisors are defined in Divisors on Spaces, Section [9] To develop the basic
results on Chern classes of vector bundles we only need the case where both the
ambient scheme and the effective Cartier divisor are flat over the base.

Lemma  24.1. [In Situation . Let X,Y/B be good. Letp: X =Y be a flat mor-
phism of relative dimension r. Leti: D — X be a relative effective Cartier divisor
(Divisors on Spaces, Definition[9.3). Let L = Ox (D). For any a € CHy41(Y) we
have
p'a=(plp)a

in CHg4(D) and

a(L)Np*a =i.((plp) a)
mn CHkJrT (X)

Proof. Let W C Y be an integral closed subspace of d-dimension k+1. By Divisors
on Spaces, Lemmawe see that DNp~1W is an effective Cartier divisor on p~1W.
By Lemma [22.7 we get the first equality in

Fp" Wlhtrs1 = [DNp~ ' Wligr = [(0l0) ™ W)kt

and the second because D N p~ (W) = (p|p) L (W) as algebraic spaces. Since
by definition p*[W] = [p~W]gi,41 we see that i*p*[W] = (p|p)*[W] as cycles.
If « = > m;[W;] is a general k + 1 cycle, then we get i*a = Y m;i*p*[W;] =
Y- mj(p|p)*[W;] as cycles. This proves then first equality. To deduce the second
from the first apply Lemma (I

25. Affine bundles

This section is the analogue of Chow Homology, Section For an affine bundle
the pullback map is surjective on Chow groups.

Lemmal 25.1. In Sz’tuation let X,Y/B be good. Let f: X — Y be a quasi-
compact flat morphism over B of relative dimension r. Assume that for everyy € Y

we have Xy = AL\ Then f*: CHp(Y) = CHiy (X) is surjective for all k € Z.

Proof. Let o € CHpy,(X). Write o« = > m;[W;] with m; # 0 and W, pairwise
distinct integral closed subspaces of d-dimension k + r. Then the family {W;} is
locally finite in X. Let Z; C Y be the integral closed subspace such that we obtain
a dominant morphism W; — Z; as in Lemma For any quasi-compact open
V C Y we see that f~*(V) N W; is nonempty only for finitely many j. Hence the
collection Z; of closures of images is a locally finite collection of integral closed
subspaces of Y.

Consider the fibre product diagrams
fUZ) —=X

fjl f

Z; ———=Y

Suppose that [W;] € Zy1(f~"(Z;)) is rationally equivalent to f; 3; for some k-cycle
B;j € CHg(Z;). Then 8 = > m;pB; will be a k-cycle on Y and f*3 = > m;f; B,
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will be rationally equivalent to « (see Remark [15.3]). This reduces us to the case Y
integral, and a = [W] for some integral closed subscheme of X dominating Y. In
particular we may assume that d = dims(Y") < oo.

Hence we can use induction on d = dims(Y). If d < k, then CHy,(X) = 0 and
the lemma holds; this is the base case of the induction. Consider a nonempty open
V C Y. Suppose that we can show that a|s-1y) = f*f for some 3 € Zp(V). By
Lemma we see that § = f'|y for some 8’ € Z,(Y). By the exact sequence
CHy(f~H(Y'\V)) = CHk(X) — CHx(f~1(V)) of Lemmawe see that a — f*f’
comes from a cycle o/ € CHy,.(f~1(Y \ V)). Since dims(Y \ V) < d we win by
induction on d.

In particular, by replacing Y by a suitable open we may assume Y is a scheme
with generic point 7. The isomorphism Y, = A} extends to an isomorphism over
a nonempty open V C Y, see Limits of Spaces, Lemma This reduces us to the
case of schemes which is Chow Homology, Lemma [32.1 (]

Lemma 25.2. In Situation let X/B be good. Let L be an invertible Ox -
module. Let

p: L =Spec(Sym* (L)) — X

be the associated vector bundle over X. Then p* : CH(X) — CHyi1(L) is an
isomorphism for all k.

Proof. For surjectivity see Lemma Let o : X — L be the zero section of
L — X, i.e., the morphism corresponding to the surjection Sym*(£) — Ox which
maps LZ" to zero for all n > 0. Then poo = idx and o(X) is an effective Cartier
divisor on L. Hence by Lemma we see that o* o p* = id and we conclude that
p* is injective too. U

26. Bivariant intersection theory

This section is the analogue of Chow Homology, Section[33] In order to intelligently
talk about higher Chern classes of vector bundles we introduce the following notion,
following [FMS&I]. It follows from [Ful98, Theorem 17.1] that our definition agrees
with that of [Ful98] modulo the caveat that we are working in different settings.

Definition 26.1. In Situationlet f X — Y be a morphism of good algebraic
spaces over B. Let p € Z. A bivariant class ¢ of degree p for f is given by a rule
which assigns to every morphism Y’ — Y of good algebraic spaces over B and every
k a map
cn—: CHL(Y'") — CHy_p(X")
where X' =Y’ xy X, satisfying the following conditions
(1) if Y — Y’ is a proper morphism, then ¢N (Y — Y'),. o’ = (X" —
Xu(ena) for all & on Y,
(2) if Y — Y’ a morphism of good algebraic spaces over B which is flat of
relative dimension r, then ¢N (Y — Y")*o/ = (X" — X")*(en <) for all
o onY’,
(3) if (L£',s',¢ : D' — Y') is as in Definition with pullback (N, ¢/, :
E' — X') to X', then we have ¢ N (i')*a’ = (§/)*(cn ') for all &/ on Y.
The collection of all bivariant classes of degree p for f is denoted AP(X — Y).

Similar to [Ful98|
Definition 17.1]
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In Situation 23] let X — Y and ¥ — Z be morphisms of good algebraic spaces
over B. Let p € Z. It is clear that A?(X — Y) is an abelian group. Moreover, it
is clear that we have a bilinear composition

AP(X = Y) x AYY — Z) — APTI(X — Z)

which is associative. We will be most interested in AP(X) = AP(X — X), which
will always mean the bivariant cohomology classes for idx. Namely, that is where
Chern classes will live.

Definition 26.2. In Situation let X/B be good. The Chow cohomology of X
is the graded Z-algebra A*(X) whose degree p component is A?(X — X).

Warning: It is not clear that the Z-algebra structure on A*(X) is commutative,
but we will see that Chern classes live in its center.

Remark| 26.3. In Situation let f: X — Y be a morphism of good algebraic
spaces over B. Then there is a canonical Z-algebra map A*(Y) — A*(X). Namely,
given ¢ € AP(Y) and X’ — X, then we can let f*c be defined by the map ¢N — :
CHy(X’) — CHy—p(X’) which is given by thinking of X' as an algebraic space over
Y.

Lemma/26.4. In Situatz'on let X/ B be good. Let L be an invertible O x -module.
Then the rule that to f : X' — X assigns c1(f*L£) N —: CHi(X') — CH,_1(X') is
a bivariant class of degree 1.

Proof. This follows from Lemmas [21.2] [19.4] [19.2] and 23.3] |

Lemmal 26.5. In Situation let f: X — Y be a morphism of good algebraic
spaces over B which is flat of relative dimension r. Then the rule that to Y' —Y
assigns (f')* : CHE(Y") = CHgyr(X') where X' = X Xy Y’ is a bivariant class of
degree —r.

Proof. This follows from Lemmas [16.2} [10.4] [I1.1] and 22.6] O

Lemma 26.6. In Situation let X/B be good. Let (L,s,i: D — X) be a triple
as in Definition[22.1] Then the rule that to f: X' — X assigns (i')* : CHi(X') —
CHy_1(D') where D' = D xx X' is a bivariant class of degree 1.

Proof. This follows from Lemmas [23.2] 22.5] [22.6] and 23.4 [

Lemmal 26.7. In Situatz'on let f: X =Y and g:Y — Z be morphisms of
good algebraic spaces over B. Let ¢c € AP(X — Z) and assume f is proper. Then
the rule that to X' — X assigns a — f.(cNa) is a bivariant class of degree p.

Proof. This follows from Lemmas and [
Here we see that ¢1(£) is in the center of A*(X).

Lemmal 26.8. [In Situation let X/B be good. Let L be an invertible Ox -
module. Then c1(L) € AY(X) commutes with every element ¢ € AP(X).

Proof. Let p: L — X be as in Lemma and let 0 : X — L be the zero section.
Observe that p*£®~! has a canonical section whose vanishing locus is exactly the
effective Cartier divisor o(X). Let o« € CHy(X). Then we see that

P (c(L N Na) = (p L) Np*a = 0.0 a
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by Lemmas [19.2) and 24.1] Since c is a bivariant class we have
p cnc (L2 HNa)=cnp (e (L% HNa)
=cNo o' p a
= 0,0"p"(cNa)
=p"(a(L®HNnena)

(last equality by the above applied to ¢N«). Since p* is injective by a lemma cited
above we get that ¢;(£L®71) is in the center of A*(X). This proves the lemma. [

Here a criterion for when a bivariant class is zero.

Lemma 26.9. In Situatz’on let X/B be good. Let ¢ € AP(X). Then c is zero
if and only if cN[Y] =0 in CH.(Y) for every integral algebraic space Y locally of
finite type over X.

Proof. The if direction is clear. For the converse, assume that ¢ N [Y] = 0 in
CH.(Y) for every integral algebraic space Y locally of finite type over X. Let
X" — X be locally of finite type. Let a € CHy(X'). Write o = > n;[Y;] with
Y; € X’ a locally finite collection of integral closed subschemes of J-dimension k.
Then we see that « is pushforward of the cycle o/ = > n;[¥;] on X” = []Y; under
the proper morphism X" — X’. By the properties of bivariant classes it suffices
to prove that cNa’ = 0 in CHy_,(X"). We have CHy_,(X") = ] CHy—,(Y7)
as follows immediately from the definitions. The projection maps CHy_,(X") —
CHy—_p(Y;) are given by flat pullback. Since capping with ¢ commutes with flat
pullback, we see that it suffices to show that ¢ N [Y;] is zero in CHy_,(Y;) which is
true by assumption. O

27. Projective space bundle formula

In Situation let X/B be good. Consider a finite locally free Ox-module £ of
rank . Our convention is that the projective bundle associated to £ is the morphism

P(€) = Proj  (Sym"(€)) ——> X

over X with Opg)(1) normalized so that 7.(Op(e)(1)) = €. In particular there is
a surjection 7€ — Op(gy(1). We will say informally “let (7 : P — X,Op(1)) be
the projective bundle associated to £” to denote the situation where P = P (&) and
Op(1) = Op(g)(1).

Lemma 27.1. In Situatz’on let X/B be good. Let & be a finite locally free Ox -
module € of rank r. Let (m: P — X,0p(1)) be the projective bundle associated to
E. For any a € CHi(X) the element

T (c1(Op(1))’ N7* ) € CHpyrm1—5(X)
is 0 if s <r —1 and is equal to o when s =1 — 1.

Proof. Let Z C X be an integral closed subspace of §-dimension k. We will prove
the lemma for oo = [Z]. We omit the argument deducing the general case from this
special case; hint: argue as in Remark [15.3]

Let P, = P xx Z be the base change; of course 7z : P; — Z is the projective
bundle associated to £|z and Op(1) pulls back to the corresponding invertible
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module on Py. Since ¢;(Op(1) N —, and 7* are bivariant classes by Lemmas [26.4]
and [26.5] we see that

T (1(0Op(1))" N7*[2]) = (Z = X)u7z,2 (1(Op, (1))° N7z [Z])
Hence it suffices to prove the lemma in case X is integral and o = [X].
Assume X is integral, dims(X) = k, and a = [X]. Note that 7*[X] = [P] as P is
integral of d-dimension r — 1. If s < r — 1, then by construction ¢1(Op(1))* N [P]

a (k+r —1— s)-cycle. Hence the pushforward of this cycle is zero for dimension
reasons.

Let s = r—1. By the argument given above we see that 7. (c1 (Op(1))*N[P]) = n[X]
for some n € Z. We want to show that n = 1. For the same dimension reasons as
above it suffices to prove this result after replacing X by a dense open. Thus we
may assume X is a scheme and the result follows from Chow Homology, Lemma

[36.11 O

Lemma 27.2 (Projective space bundle formula). Let (S,0) be as in Situation .
Let X be locally of finite type over S. Let £ be a finite locally free Ox-module £ of
rank r. Let (m: P — X,Op(1)) be the projective bundle associated to €. The map

r—1

D,_, CHrri(X) — CHypra(P),

(0, -y 1) — g + 1 (Op(1)) Ny + ...+ 1 (Op(1) PNy
is an isomorphism.

Proof. Fix k € Z. We first show the map is injective. Suppose that (ag,...,ar_1)
is an element of the left hand side that maps to zero. By Lemma [27.1] we see that

0=m (1" ap +c1(Op(D))N7*ar + ...+ (Op(1)) ' Nr*ar_1) = ap
Next, we see that
0 = 7 (c1 (Op())N (T ap+c1 (Op(I))NT a1 +. . . 4c1(Op(1) 2Nr*ar_2)) = ar_s
and so on. Hence the map is injective.

To prove the map is surjective, we will argue exactly as in the proof of Lemma [25.1]
to reduce to the case of schemes. We urge the reader to skip the proof.

Let 5 € CHiqr—1(P). Write 8 = > m;[W;] with m; # 0 and W, pairwise distinct
integral closed subspaces of 6-dimension k+r. Then the family {W;} is locally finite
in P. Let Z; C X be the “image” of W; as in Lemma For any quasi-compact
open U C X we see that 7= (U) N W; is nonempty only for finitely many j. Hence

the collection Z; of images is a locally finite collection of integral closed subspaces
of X.

Consider the fibre product diagrams
pP,——P

<

Suppose that [W;] € Zp1,_1(F;) is rationally equivalent to
’/T;Osz + 61(0(1)) N 71';0@'71 + ...+ 01(0(1))T71 N W;fajm_l
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for some (k+1)-cycle aj; € CHg4;(Z;). Then a; =Y m;B;,; will be a (k+1)-cycle
on X and

7T*Oé() + 61(0(1)) n 71'*041 + ...+ 61(0(1))7”71 N ’/T*Ozr_l

will be rationally equivalent to 3 (see Remark[15.3)). This reduces us to the case X
integral, and «a = [W] for some integral closed subscheme of P dominating X. In
particular we may assume that d = dim;(X) < oo.

Hence we can use induction on d = dims(X). If d < k, then CHy4,—1(X) = 0 and
the lemma holds; this is the base case of the induction. Consider a nonempty open
U C X. Suppose that we can show that

Ble-1y =T a0+ 1 (O1)) Na*ay + ...+ (O(1) ™ Na*ap_y
for some a; € Zp4+;(U). By Lemma we see that a; = of|y for some o) €

Zk+i(X). By the exact sequences CHy (7~ (X\U)) — CHyyi(P) — CHypi(n~1(U))
of Lemma [[5.2] we see that

B—(r"ap+a(O)Nraf +...+c(O1) " Nrral_y)

comes from a cycle 8/ € CHgo.(771(X \ U)). Since dims(X \ U) < d we win by
induction on d.

In particular, by replacing X by a suitable open we may assume X is a scheme and
we have reduced our problem to Chow Homology, Lemma [36.2 (]

0OERW Lemma 27.3. In Situatz'on let X/B be good. Let € be a finite locally free sheaf
of rank r on X. Let

p: E = Spec(Sym*(£)) — X
be the associated vector bundle over X. Then p* : CHi(X) — CHpir(E) is an
isomorphism for all k.

Proof. (For the case of linebundles, see Lemma [25.2]) For surjectivity see Lemma
Let (7 : P — X,Op(1)) be the projective space bundle associated to the finite
locally free sheaf £ @ Ox. Let s € I'(P,Op(1)) correspond to the global section
(0,1) e I'(X,E ® Ox). Let D = Z(s) C P. Note that (n|p : D — X,0p(1)|p) is
the projective space bundle associated to £. We denote mp = «|p and Op(1) =
Op(1)|p. Moreover, D is an effective Cartier divisor on P. Hence Op(D) = Op(1)
(see Divisors on Spaces, Lemma . Also there is an isomorphism E = P\ D.
Denote j : E — P the corresponding open immersion. For injectivity we use that
the kernel of
.j* : CHk-‘rT(P) — CHk-‘rT(E)

are the cycles supported in the effective Cartier divisor D, see Lemma So if
p*a =0, then 7*a = .0 for some 8 € CHy,,(D). By Lemma we may write

ﬂ = 71';)50 + ...+ Cl(oD(l))Til N W*Dﬂr_l.
for some ; € CHg4;(X). By Lemmas and this implies
m*a=1.0=c(Op())N7*Bo+ ... +c1(Op(1))" N7*Br_1.

Since the rank of £ @ Oy is r + 1 this contradicts Lemma [19.4] unless all o and all
(; are zero. O
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28. The Chern classes of a vector bundle

This section is the analogue of Chow Homology, Sections and However,
contrary to what is done there, we directly define the Chern classes of a vector
bundle as bivariant classes. This saves a considerable amount of work.

Lemma 28.1. In Situation let X/B be good. Let & be a finite locally free sheaf
of rank r on X. Let (m: P — X,0p(1)) be the projective space bundle associated
to £. For every morphism X' — X of good algebraic spaces over B there are unique
maps

Ci(g)ﬁ—:CHk(XI)—>CHk,Z‘(X/), 1=0,...,r

such that for a € CHi(X') we have co(€) N = « and

Zifo r(_l)icl(OP’(l))i N ()" (er—i(€)Na) =0

,,,,,

where 7' : P’ — X' is the base change of m. Moreover, these maps define a bivariant
class ¢;(€) of degree i on X.

Proof. Uniqueness and existence of the maps ¢;(£) N — follows immediately from
Lemma and the given description of ¢g(€). For every i € Z the rule which to
every morphism X’ — X of good algebraic spaces over B assigns the map

£(E) N — : CHY(X') — CHp_i(X"),  a+— 7(cr(Op /(1)) 0 (7))

is a bivariant classﬂ by Lemmas [26.4] [26.5, and [26.7. By Lemma we have
t;(€) = 0 for i < 0 and t,(€) = 1. Applying pushforward to the equation in the
statement of the lemma we find from Lemma 27.1] that

(=10 (E) + (1) e (6) =0

In particular we find that ¢;(€) is a bivariant class. If we multiply the equation in
the statement of the lemma by ¢;(Ops(1)) and push the result forward to X’ we
find

(=1)"t2(E) + (=) (E) Ner(E) + (1) 2c2(E) = 0

As before we conclude that c3(€) is a bivariant class. And so on. O

Definition 28.2. In Situation let X/B be good. Let £ be a finite locally free
sheaf of rank 7 on X. For i =0,...,r the ith Chern class of £ is the bivariant class
¢i(€) € AY(X) of degree i constructed in Lemma The total Chern class of €
is the formal sum

(&) =co(E)+c1(&)+ ...+ ¢ (&)
which is viewed as a nonhomogeneous bivariant class on X.

For convenience we often set ¢;(£) = 0 for ¢ > r and ¢ < 0. By definition we have
co(€) =1 € A%(X). Here is a sanity check.

Lemma 28.3. In Situation let X/B be good. Let L be an invertible Ox -
module. The first Chern class of L on X of Definition is equal to the bivariant
class of Lemma [26.4)

2Up to signs these are the Segre classes of £.
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Proof. Namely, in this case P = P(£) = X with Op(1) = £ by our normalization
of the projective bundle, see Section 27] Hence the equation in Lemma [28.1] reads
(=1)% (L)’ Net (L) Na+ (=1) e (L) Nege (L) Na =0
where ¢““(L) is as in Definition Since (L) = 1 and ¢1(£)° = 1 we

conclude. O

Next we see that Chern classes are in the center of the bivariant Chow cohomology
ring A*(X).

Lemmal 28.4. In Situation let X/B be good. Let £ be a locally free Ox -

module of rank r. Then c;(L) € A¥(X) commutes with every element c € AP(X).

In particular, if F is a second locally free Ox-module on X of rank s, then
GE)Ne(F)Na=ci(F)NgE)Na

as elements of CHy_;_;(X) for all o € CHy(X).

Proof. Let X’ — X be a morphism of good algebraic spaces over B. Let a €
CH(X'). Write a; = ¢;(€) N, so ag = a. By Lemma we have

> (DO W) N () (@) = 0

in the chow group of the projective bundle (7' : P" — X’ Op/(1)) associated to
(X’ = X)*&. Applying ¢cN— and using Lemma and the properties of bivariant
classes we obtain

S DO ) naena, ) =0

in the Chow group of P’. Hence we see that ¢ N «; is equal to ¢;(£) N (cNa) by
the uniqueness in Lemma This proves the lemma. (I

Remark 28.5. In Situation let X/B be good. Let & be a finite locally free
Ox-module. If the rank of £ is not constant then we can still define the Chern
classes of £. Namely, in this case we can write

X=X IX;OX,1I...

where X, C X is the open and closed subspace where the rank of £ isr. If X’ — X
is a morphism of good algebraic spaces over B, then we obtain by pullback a
corresponding decomposition of X’ and we find that

CH.(X") =[] , CH.(X])

by our definitions. Then we simply define ¢;(£) to be the bivariant class which
preserves these direct product decompositions and acts by the already defined op-
erations ¢;(€|x,) N — on the factors. Observe that in this setting it may happen
that ¢;(€) is nonzero for infinitely many i.

r>

29. Polynomial relations among Chern classes

In Situation let X/B be good. Let &; be a finite collection of finite locally free
Ox-modules. By Lemma [28.4] we see that the Chern classes

¢)(€) € A*(X)

generate a commutative (and even central) Z-subalgebra of the Chow cohomology
A*(X). Thus we can say what it means for a polynomial in these Chern classes
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to be zero, or for two polynomials to be the same. As an example, saying that
c1(&1)% + c2(E2)c3(E3) = 0 means that the operations

CHk(Y) — CHk_g)(Y), a+— C1 (81)5 No+ 02(52) n 63(53) Na

are zero for all morphisms f: Y — X of good algebraic spaces over B. By Lemma
[26.9] this is equivalent to the requirement that given any morphism f : Y — X
where Y is an integral algebraic space locally of finite type over X the cycle

(&)’ N[Y] + c2(E2) Nes(E3) N [Y]
is zero in CHgim(y)—5(Y)-
A specific example is the relation
(L ®@oy N)=c1(L) + 1 (N)

proved in Lemma More generally, here is what happens when we tensor an
arbitrary locally free sheaf by an invertible sheaf.

Lemma 29.1. In Situation let X/B be good. Let £ be a finite locally free sheaf
of rank r on X. Let L be an invertible sheaf on X. Then we have

(29.1.1) a(E®L)= Zj‘:o ( >Cij(5)01([,)j
in A*(X).

r—i+j
J

Proof. The proof is identical to the proof of Chow Homology, Lemma replac-
ing the lemmas used there by Lemmas and ([l
30. Additivity of Chern classes

This section is the analogue of Chow Homology, Section

Lemmal 30.1. In Situation let X/B be good. Let £, F be finite locally free
sheaves on X of ranks v, r — 1 which fit into a short exact sequence

0-0x >&E—F—0

Then we have

in A*(X).
Proof. The proof is identical to the proof of Chow Homology, Lemma replac-

ing the lemmas used there by Lemmas [26.9] 24.1] [19.4], and 28.1] O

Lemma 30.2. [In Situation let X/B be good. Let £, F be finite locally free
sheaves on X of ranks v, r — 1 which fit into a short exact sequence

0O=L—=E=F—=0

where L is an invertible sheaf. Then
(&) = c(L)e(F)
in A*(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma replac-
ing the lemmas used there by Lemmas [30.1] and 29.1] O
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Lemma 30.3. In Situation let X/B be good. Suppose that € sits in an exact
sequence
08 —-E—E —0

of finite locally free sheaves &; of rank r;. The total Chern classes satisfy
(&) = c(&1)c(&)

in A*(X).
Proof. The proof is identical to the proof of Chow Homology, Lemma replac-
ing the lemmas used there by Lemmas [26.9] [30.2} and 28.1] O

Lemmal 30.4. In Situatz'on let X/B be good. Let L;,1=1,...,7 be invertible

Ox -modules. Let £ be a locally free rank Ox -module endowed with a filtration
0= Ccé&E Ccé&C...céE =€

such that /€1 = L;. Set c1(L;) = x;. Then

(&) =TI _a+x)
in A*(X).
Proof. Apply Lemma [30.2] and induction. (]

31. The splitting principle
This section is the analogue of Chow Homology, Section

Lemmal 31.1. In Situation let X/B be good. Let &; be a finite collection
of locally free Ox-modules of rank r;. There exists a projective flat morphism
w: P — X of relative dimension d such that

(1) for any morphism f :'Y — X of good algebraic spaces over B the map
7y 1 CH(Y) —» CH.14(Y xx P) is injective, and

(2) each 7*&; has a filtration whose successive quotients L;1,...,L;,, are in-
vertible O p-modules.

Proof. We prove this by induction on the integer r = > r;. If r = 0 we can
take m = idx. If r; = 1 for all 7, then we can also take m = idx. Assume that
r;, > 1 for some ig. Let (7 : P — X,Op(1)) be the projective bundle associated
to &;,. The canonical map 7*&;, — Op(1) is surjective and hence its kernel &; is
finite locally free of rank r;, — 1. Observe that 73§ is injective for any morphism
f:Y — X of good algebraic spaces over B, see Lemma Thus it suffices to
prove the lemma for P and the locally free sheaves n*E&;. However, because we
have the subbundle &, C 7*&;, with invertible quotient, it now suffices to prove
the lemma for the collection {&; }ix;, U{&; }. This decreases r by 1 and we win by
induction hypothesis. ([l

Rather than explaining what the splitting principle says, let us use it in the proof
of some lemmas.

Lemma 31.2. [In Situation let X/B be good. Let € be a finite locally free
Ox -module with dual V. Then

(€)= (-1)ei(€)
in AY(X).
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Proof. Choose a morphism 7 : P — X as in Lemma [31.1] By the injectivity of 7*
(after any base change) it suffices to prove the relation between the Chern classes
of £ and &Y after pulling back to P. Thus we may assume there exist invertible
Ox-modules £;, i =1,...,r and a filtration

0=&Ccé& cé&c...céE =€
such that &;/&;_1 = L;. Then we obtain the dual filtration
0=&rcé&fcé&tc...c&h=¢Y
such that &, /& = £P71. Set x; = ¢1(L;). Then ¢;(£Y™') = —z; by Lemma
[[8:2] By Lemma[30.4] we have
c(€) = Hi:l(l +x;) and c(&Y)= H (1—a)

=1

in A*(X). The result follows from a formal computation which we omit. O

Lemma 31.3. In Situation let X/B be good. Let & and F be a finite locally
free Ox-modules of ranks r and s. Then we have

1(EQRF) =rc1(F) + sci(€)
c2(E @ F) = r?ca(F) +rsci(F)ei(E) + s2ca(E)
and so on (see proof).

Proof. Arguing exactly as in the proof of Lemma [31.2] we may assume we have
invertible Ox-modules £;, i =1,...,r N;, i =1,..., s filtrations

0= cé& céc...céE =€ and 0=FygCFiCFC...CFe=F

such that &/&_1 = L; and such that F;/F;_1 = N;. Ordering pairs (i, j) lexico-
graphically we obtain a filtration

0C...CERF;+E1QFC...CERF
with successive quotients
L1 ONL LI @Ny, .., L1ONG, Ly @Ny, ... Ly N
By Lemma [30.4] we have
(&) =[+m), oF) =][0+y), and o(F) =[]0 +azi+uv),

in A*(X). The result follows from a formal computation which we omit. O

32. Degrees of zero cycles

This section is the analogue of Chow Homology, Section We start with defining
the degree of a zero cycle on a proper algebraic space over a field.

Definition 32.1. Let k& be a field. Let p : X — Spec(k) be a proper morphism of
algebraic spaces. The degree of a zero cycle on X is given by proper pushforward

P« : CHo(X) — CHo(Spec(k)) — Z

(Lemma [16.3) composed with the natural isomorphism CHg(Spec(k)) — Z which
maps [Spec(k)] to 1. Notation: deg(«).

Let us spell this out further.
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Lemma 32.2. Let k be a field. Let X be a proper algebraic space over k. Let
a=>.n;[Z;] be in Zo(X). Then

deg(a) = Z n; deg(Z;)
where deg(Z;) is the degree of Z; — Spec(k), i.e., deg(Z;) = dimy T'(Z;, Oz,).
Proof. This is the definition of proper pushforward (Definition . U
Lemma 32.3. Let k be a field. Let X be a proper algebraic space over k. Let

Z C X be a closed subspace of dimension d. Let Lq,...,Lq be invertible Ox-
modules. Then

(£1 ce ,Cd . Z) = deg(cl(ﬁl) n...N cl(ﬁl) n [Z]d)
where the left hand side is defined in Spaces over Fields, Definition[18.3
Proof. Let Z; C Z,i=1,...,t be the irreducible components of dimension d. Let
m; be the multiplicity of Z; in Z. Then [Z]g = Y. m;[Z;] and ¢1(L1)N...Nep(Lg) N
[Z]4 is the sum of the cycles m;ci(L1)N...Ney(Lq) N[Z;]. Since we have a similar
decomposition for (£1--- L4 - Z) by Spaces over Fields, Lemma it suffices to
prove the lemma in case Z = X is a proper integral algebraic space over k.
By Chow’s lemma there exists a proper morphism f : X’ — X which is an isomor-
phism over a dense open U C X such that X’ is a scheme. See More on Morphisms
of Spaces, Lemma Then X’ is a proper scheme over k. After replacing X’ by
the scheme theoretic closure of f~1(U) we may assume that X’ is integral. Then
(f*Ly- f Ly X')= (L1 Lqg-X)

by Spaces over Fields, Lemma [I8.7 and we have

f*(cl(f*ﬁl) n...N Cl(f*ﬁd) n [Y]) = 01(£1> n...N Cl<£d) n [X]

by Lemma [19.41 Thus we may replace X by X’ and assume that X is a proper
scheme over k. This case was proven in Chow Homology, Lemma O
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