The Stacks project

Definition 18.23.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. We will freely use the notions defined in Definition 18.17.1.

  1. We say $\mathcal{F}$ is locally free if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that each restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is a free $\mathcal{O}_{U_ i}$-module.

  2. We say $\mathcal{F}$ is finite locally free if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that each restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is a finite free $\mathcal{O}_{U_ i}$-module.

  3. We say $\mathcal{F}$ is locally generated by sections if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that each restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is an $\mathcal{O}_{U_ i}$-module generated by global sections.

  4. Given $r \geq 0$ we sat $\mathcal{F}$ is locally generated by $r$ sections if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that each restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is an $\mathcal{O}_{U_ i}$-module generated by $r$ global sections.

  5. We say $\mathcal{F}$ is of finite type if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that each restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is an $\mathcal{O}_{U_ i}$-module generated by finitely many global sections.

  6. We say $\mathcal{F}$ is quasi-coherent if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that each restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is an $\mathcal{O}_{U_ i}$-module which has a global presentation.

  7. We say $\mathcal{F}$ is of finite presentation if for every object $U$ of $\mathcal{C}$ there exists a covering $\{ U_ i \to U\} _{i \in I}$ of $\mathcal{C}$ such that each restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is an $\mathcal{O}_{U_ i}$-module which has a finite global presentation.

  8. We say $\mathcal{F}$ is coherent if and only if $\mathcal{F}$ is of finite type, and for every object $U$ of $\mathcal{C}$ and any $s_1, \ldots , s_ n \in \mathcal{F}(U)$ the kernel of the map $\bigoplus _{i = 1, \ldots , n} \mathcal{O}_ U \to \mathcal{F}|_ U$ is of finite type on $(\mathcal{C}/U, \mathcal{O}_ U)$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03DL. Beware of the difference between the letter 'O' and the digit '0'.