The Stacks project

Lemma 4.6.5. Let $\mathcal{C}$ be a category. Let $f : x \to y$, and $g : y \to z$ be representable. Then $g \circ f : x \to z$ is representable.

Proof. Let $t \in \mathop{\mathrm{Ob}}\nolimits (\mathcal C)$ and $ \varphi \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(t,z) $. As $g$ and $f$ are representable, we obtain commutative diagrams

\[ \xymatrix{ y \times _ z t \ar[r]_ q \ar[d]_ p & t \ar[d]^{\varphi } \\ y \ar[r]^{g} & z } \quad \quad \xymatrix{ x \times _ y (y\! \times _ z\! t) \ar[r]_{q'} \ar[d]_{p'} & y \times _ z t \ar[d]^ p \\ x \ar[r]^ f & y } \]

with the universal property of Definition 4.6.1. We claim that $x \times _ z t = x \times _ y (y \times _ z t)$ with morphisms $q \circ q' : x \times _ z t \to t$ and $p' : x \times _ z t \to x$ is a fibre product. First, it follows from the commutativity of the diagrams above that $\varphi \circ q \circ q' = f \circ g \circ p'$. To verify the universal property, let $w \in \mathop{\mathrm{Ob}}\nolimits (\mathcal C)$ and suppose $\alpha : w \to x$ and $\beta : w \to y$ are morphisms with $\varphi \circ \beta = f \circ g \circ \alpha $. By definition of the fibre product, there are unique morphisms $\delta $ and $\gamma $ such that

\[ \xymatrix{ w \ar[rrrd]^\beta \ar@{-->}[rrd]_\delta \ar[rrdd]_{f\circ \alpha } & & \\ & & y \times _ z t \ar[d]_ p \ar[r]_ q & t \ar[d]^{\varphi } \\ & & y \ar[r]^{g} & z } \]

and

\[ \xymatrix{ w \ar[rrrd]^\delta \ar@{-->}[rrd]_\gamma \ar[rrdd]_{\alpha } & & \\ & & x \times _ y (y\! \times _ z\! t) \ar[d]_{p'} \ar[r]_{q'} & y \times _ z t \ar[d]^{p} \\ & & x \ar[r]^{f} & y } \]

commute. Then, $\gamma $ makes the diagram

\[ \xymatrix{ w \ar[rrrd]^\beta \ar@{-->}[rrd]_\gamma \ar[rrdd]_{\alpha } & & \\ & & x \times _ z t \ar[d]_{p'} \ar[r]_{q\circ q'} & t \ar[d]^{\varphi } \\ & & x \ar[r]^{g\circ f} & z } \]

commute. To show its uniqueness, let $\gamma '$ verify $ q\circ q'\circ \gamma ' = \beta $ and $ p'\circ \gamma ' = \alpha $. Because $\gamma $ is unique, we just need to prove that $ q'\circ \gamma ' = \delta $ and $ p'\circ \gamma ' = \alpha $ to conclude. We supposed the second equality. For the first one, we also need to use the uniqueness of delta. Notice that $\delta $ is the only morphism verifying $ q\circ \delta = \beta $ and $ p\circ \delta = f\circ \alpha $. We already supposed that $ q\circ (q'\circ \gamma ') = \beta $. Furthermore, by definition of the fibre product, we know that $ f\circ p' = p\circ q' $. Therefore:

\[ p\circ (q'\circ \gamma ') = (p\circ q')\circ \gamma ' = (f\circ p')\circ \gamma ' = f\circ (p'\circ \gamma ') = f\circ \alpha . \]

Then $ q'\circ \gamma ' = \delta $, which concludes the proof. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 4.6: Fibre products

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 001Y. Beware of the difference between the letter 'O' and the digit '0'.