## Tag `00A4`

Chapter 6: Sheaves on Spaces > Section 6.31: Open immersions and (pre)sheaves

Definition 6.31.5. Let $X$ be a topological space. Let $j : U \to X$ be the inclusion of an open subset.

- Let $\mathcal{F}$ be an abelian presheaf on $U$. We define the
extension $j_{p!}\mathcal{F}$ of $\mathcal{F}$ by $0$to be the abelian presheaf on $X$ defined by the rule $$ j_{p!}\mathcal{F}(V) = \left\{ \begin{matrix} 0 & \text{if} & V \not \subset U \\ \mathcal{F}(V) & \text{if} & V \subset U \end{matrix} \right. $$ with obvious restriction mappings.- Let $\mathcal{F}$ be an abelian sheaf on $U$. We define the
extension $j_!\mathcal{F}$ of $\mathcal{F}$ by $0$to be the sheafification of the abelian presheaf $j_{p!}\mathcal{F}$.- Let $\mathcal{C}$ be a category having an initial object $e$. Let $\mathcal{F}$ be a presheaf on $U$ with values in $\mathcal{C}$. We define the
extension $j_{p!}\mathcal{F}$ of $\mathcal{F}$ by $e$to be the presheaf on $X$ with values in $\mathcal{C}$ defined by the rule $$ j_{p!}\mathcal{F}(V) = \left\{ \begin{matrix} e & \text{if} & V \not \subset U \\ \mathcal{F}(V) & \text{if} & V \subset U \end{matrix} \right. $$ with obvious restriction mappings.- Let $(\mathcal{C}, F)$ be a type of algebraic structure such that $\mathcal{C}$ has an initial object $e$. Let $\mathcal{F}$ be a sheaf of algebraic structures on $U$ (of the give type). We define the
extension $j_!\mathcal{F}$ of $\mathcal{F}$ by $e$to be the sheafification of the presheaf $j_{p!}\mathcal{F}$ defined above.- Let $\mathcal{O}$ be a presheaf of rings on $X$. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}|_U$-modules. In this case we define the
extension by $0$to be the presheaf of $\mathcal{O}$-modules which is equal to $j_{p!}\mathcal{F}$ as an abelian presheaf endowed with the multiplication map $\mathcal{O} \times j_{p!}\mathcal{F} \to j_{p!}\mathcal{F}$.- Let $\mathcal{O}$ be a sheaf of rings on $X$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}|_U$-modules. In this case we define the
extension by $0$to be the $\mathcal{O}$-module which is equal to $j_!\mathcal{F}$ as an abelian sheaf endowed with the multiplication map $\mathcal{O} \times j_!\mathcal{F} \to j_!\mathcal{F}$.

The code snippet corresponding to this tag is a part of the file `sheaves.tex` and is located in lines 4539–4596 (see updates for more information).

```
\begin{definition}
\label{definition-j-shriek-structures}
Let $X$ be a topological space.
Let $j : U \to X$ be the inclusion of an open subset.
\begin{enumerate}
\item Let $\mathcal{F}$ be an abelian presheaf on $U$.
We define the {\it extension $j_{p!}\mathcal{F}$ of $\mathcal{F}$ by $0$}
to be the abelian presheaf on $X$ defined by the rule
$$
j_{p!}\mathcal{F}(V) =
\left\{
\begin{matrix}
0 & \text{if} & V \not \subset U \\
\mathcal{F}(V) & \text{if} & V \subset U
\end{matrix}
\right.
$$
with obvious restriction mappings.
\item Let $\mathcal{F}$ be an abelian sheaf on $U$. We define
the {\it extension $j_!\mathcal{F}$ of $\mathcal{F}$ by $0$}
to be the sheafification of the abelian presheaf $j_{p!}\mathcal{F}$.
\item Let $\mathcal{C}$ be a category having an initial object $e$.
Let $\mathcal{F}$ be a presheaf on $U$ with values in $\mathcal{C}$.
We define the {\it extension $j_{p!}\mathcal{F}$ of $\mathcal{F}$ by $e$}
to be the presheaf on $X$ with values in $\mathcal{C}$ defined by the
rule
$$
j_{p!}\mathcal{F}(V) =
\left\{
\begin{matrix}
e & \text{if} & V \not \subset U \\
\mathcal{F}(V) & \text{if} & V \subset U
\end{matrix}
\right.
$$
with obvious restriction mappings.
\item Let $(\mathcal{C}, F)$ be a type of algebraic structure
such that $\mathcal{C}$ has an initial object $e$.
Let $\mathcal{F}$ be a sheaf of algebraic structures on $U$
(of the give type). We define the
{\it extension $j_!\mathcal{F}$ of $\mathcal{F}$ by $e$}
to be the sheafification of the presheaf $j_{p!}\mathcal{F}$
defined above.
\item Let $\mathcal{O}$ be a presheaf of rings on $X$.
Let $\mathcal{F}$ be a presheaf of $\mathcal{O}|_U$-modules.
In this case we define the {\it extension by $0$}
to be the presheaf of $\mathcal{O}$-modules which is equal to
$j_{p!}\mathcal{F}$ as an abelian presheaf endowed with
the multiplication map
$\mathcal{O} \times j_{p!}\mathcal{F} \to j_{p!}\mathcal{F}$.
\item Let $\mathcal{O}$ be a sheaf of rings on $X$.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}|_U$-modules.
In this case we define the {\it extension by $0$}
to be the $\mathcal{O}$-module which is equal to
$j_!\mathcal{F}$ as an abelian sheaf endowed with
the multiplication map $\mathcal{O} \times j_!\mathcal{F} \to j_!\mathcal{F}$.
\end{enumerate}
\end{definition}
```

## Comments (0)

## Add a comment on tag `00A4`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There is also 1 comment on Section 6.31: Sheaves on Spaces.