# The Stacks Project

## Tag 00EC

Lemma 10.20.1. Let $R$ be a ring. Let $e \in R$ be an idempotent. In this case $$\mathop{\rm Spec}(R) = D(e) \amalg D(1-e).$$

Proof. Note that an idempotent $e$ of a domain is either $1$ or $0$. Hence we see that \begin{eqnarray*} D(e) & = & \{ \mathfrak p \in \mathop{\rm Spec}(R) \mid e \not\in \mathfrak p \} \\ & = & \{ \mathfrak p \in \mathop{\rm Spec}(R) \mid e \not = 0\text{ in }\kappa(\mathfrak p) \} \\ & = & \{ \mathfrak p \in \mathop{\rm Spec}(R) \mid e = 1\text{ in }\kappa(\mathfrak p) \} \end{eqnarray*} Similarly we have \begin{eqnarray*} D(1-e) & = & \{ \mathfrak p \in \mathop{\rm Spec}(R) \mid 1 - e \not\in \mathfrak p \} \\ & = & \{ \mathfrak p \in \mathop{\rm Spec}(R) \mid e \not = 1\text{ in }\kappa(\mathfrak p) \} \\ & = & \{ \mathfrak p \in \mathop{\rm Spec}(R) \mid e = 0\text{ in }\kappa(\mathfrak p) \} \end{eqnarray*} Since the image of $e$ in any residue field is either $1$ or $0$ we deduce that $D(e)$ and $D(1-e)$ cover all of $\mathop{\rm Spec}(R)$. $\square$

The code snippet corresponding to this tag is a part of the file algebra.tex and is located in lines 3447–3454 (see updates for more information).

\begin{lemma}
\label{lemma-idempotent-spec}
Let $R$ be a ring. Let $e \in R$ be an idempotent.
In this case
$$\Spec(R) = D(e) \amalg D(1-e).$$
\end{lemma}

\begin{proof}
Note that an idempotent $e$ of a domain is either $1$ or $0$.
Hence we see that
\begin{eqnarray*}
D(e)
& = &
\{ \mathfrak p \in \Spec(R)
\mid
e \not\in \mathfrak p \} \\
& = &
\{ \mathfrak p \in \Spec(R)
\mid
e \not = 0\text{ in }\kappa(\mathfrak p) \} \\
& = &
\{ \mathfrak p \in \Spec(R)
\mid
e = 1\text{ in }\kappa(\mathfrak p) \}
\end{eqnarray*}
Similarly we have
\begin{eqnarray*}
D(1-e)
& = &
\{ \mathfrak p \in \Spec(R)
\mid
1 - e \not\in \mathfrak p \} \\
& = &
\{ \mathfrak p \in \Spec(R)
\mid
e \not = 1\text{ in }\kappa(\mathfrak p) \} \\
& = &
\{ \mathfrak p \in \Spec(R)
\mid
e = 0\text{ in }\kappa(\mathfrak p) \}
\end{eqnarray*}
Since the image of $e$ in any residue field is either $1$ or $0$
we deduce that $D(e)$ and $D(1-e)$ cover all of $\Spec(R)$.
\end{proof}

There are no comments yet for this tag.

## Add a comment on tag 00EC

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).