# The Stacks Project

## Tag: 00HL

This tag has label algebra-lemma-flat-tor-zero and it points to

The corresponding content:

Lemma 9.36.11. Suppose that $R$ is a ring, $0 \to M'' \to M' \to M \to 0$ a short exact sequence, and $N$ an $R$-module. If $M$ is flat then $N \otimes_R M'' \to N \otimes_R M'$ is injective, i.e., the sequence $$0 \to N \otimes_R M'' \to N \otimes_R M' \to N \otimes_R M \to 0$$ is a short exact sequence.

Proof. Let $R^{(I)} \to N$ be a surjection from a free module onto $N$ with kernel $K$. The result follows by a simple diagram chase from the following diagram $$\begin{matrix} & & 0 & & 0 & & 0 & & \\ & & \uparrow & & \uparrow & & \uparrow & & \\ & & M''\otimes_R N & \to & M' \otimes_R N & \to & M \otimes_R N & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ 0 & \to & (M'')^{(I)} & \to & (M')^{(I)} & \to & M^{(I)} & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ & & M''\otimes_R N & \to & M' \otimes_R N & \to & M \otimes_R N & \to & 0 \\ & & & & & & \uparrow & & \\ & & & & & & 0 & & \end{matrix}$$ with exact rows and columns. The middle row is exact because tensoring with the free module $R^{(I)}$ is exact. $\square$

\begin{lemma}
\label{lemma-flat-tor-zero}
Suppose that $R$ is a ring, $0 \to M'' \to M' \to M \to 0$
a short exact sequence, and $N$ an $R$-module. If $M$ is flat
then $N \otimes_R M'' \to N \otimes_R M'$ is injective, i.e., the
sequence
$$0 \to N \otimes_R M'' \to N \otimes_R M' \to N \otimes_R M \to 0$$
is a short exact sequence.
\end{lemma}

\begin{proof}
Let $R^{(I)} \to N$ be a surjection from a free module
onto $N$ with kernel $K$. The result follows
by a simple diagram chase from the following diagram
$$\begin{matrix} & & 0 & & 0 & & 0 & & \\ & & \uparrow & & \uparrow & & \uparrow & & \\ & & M''\otimes_R N & \to & M' \otimes_R N & \to & M \otimes_R N & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ 0 & \to & (M'')^{(I)} & \to & (M')^{(I)} & \to & M^{(I)} & \to & 0 \\ & & \uparrow & & \uparrow & & \uparrow & & \\ & & M''\otimes_R N & \to & M' \otimes_R N & \to & M \otimes_R N & \to & 0 \\ & & & & & & \uparrow & & \\ & & & & & & 0 & & \end{matrix}$$
with exact rows and columns. The middle row is exact because tensoring
with the free module $R^{(I)}$ is exact.
\end{proof}


To cite this tag (see How to reference tags), use:

\cite[\href{http://stacks.math.columbia.edu/tag/00HL}{Tag 00HL}]{stacks-project}


There are no comments yet for this tag.

## Add a comment on tag 00HL

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following box. So in case this is tag 0321 you just have to write 0321. This captcha seems more appropriate than the usual illegible gibberish, right?