The Stacks project

Lemma 10.43.4. Let $k$ be a field. Let $R$, $S$ be $k$-algebras.

  1. If $R \otimes _ k S$ is nonreduced, then there exist finitely generated subalgebras $R' \subset R$, $S' \subset S$ such that $R' \otimes _ k S'$ is not reduced.

  2. If $R \otimes _ k S$ contains a nonzero zerodivisor, then there exist finitely generated subalgebras $R' \subset R$, $S' \subset S$ such that $R' \otimes _ k S'$ contains a nonzero zerodivisor.

  3. If $R \otimes _ k S$ contains a nontrivial idempotent, then there exist finitely generated subalgebras $R' \subset R$, $S' \subset S$ such that $R' \otimes _ k S'$ contains a nontrivial idempotent.

Proof. Suppose $z \in R \otimes _ k S$ is nilpotent. We may write $z = \sum _{i = 1, \ldots , n} x_ i \otimes y_ i$. Thus we may take $R'$ the $k$-subalgebra generated by the $x_ i$ and $S'$ the $k$-subalgebra generated by the $y_ i$. The second and third statements are proved in the same way. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00I3. Beware of the difference between the letter 'O' and the digit '0'.