The Stacks project

Lemma 10.71.5. Let $R$ be a ring. Let $M_1, M_2, N$ be $R$-modules. Suppose that $F_{\bullet }$ is a free resolution of the module $M_1$, and $G_{\bullet }$ is a free resolution of the module $M_2$. Let $\varphi : M_1 \to M_2$ be a module map. Let $\alpha : F_{\bullet } \to G_{\bullet }$ be a map of complexes inducing $\varphi $ on $M_1 = \mathop{\mathrm{Coker}}(d_{F, 1}) \to M_2 = \mathop{\mathrm{Coker}}(d_{G, 1})$, see Lemma 10.71.4. Then the induced maps

\[ H^ i(\alpha ) : H^ i(\mathop{\mathrm{Hom}}\nolimits _ R(F_{\bullet }, N)) \longrightarrow H^ i(\mathop{\mathrm{Hom}}\nolimits _ R(G_{\bullet }, N)) \]

are independent of the choice of $\alpha $. If $\varphi $ is an isomorphism, so are all the maps $H^ i(\alpha )$. If $M_1 = M_2$, $F_\bullet = G_\bullet $, and $\varphi $ is the identity, so are all the maps $H_ i(\alpha )$.

Proof. Another map $\beta : F_{\bullet } \to G_{\bullet }$ inducing $\varphi $ is homotopic to $\alpha $ by Lemma 10.71.4. Hence the maps $\mathop{\mathrm{Hom}}\nolimits _ R(F_\bullet , N) \to \mathop{\mathrm{Hom}}\nolimits _ R(G_\bullet , N)$ are homotopic. Hence the independence result follows from Lemma 10.71.3.

Suppose that $\varphi $ is an isomorphism. Let $\psi : M_2 \to M_1$ be an inverse. Choose $\beta : G_{\bullet } \to F_{\bullet }$ be a map inducing $\psi : M_2 = \mathop{\mathrm{Coker}}(d_{G, 1}) \to M_1 = \mathop{\mathrm{Coker}}(d_{F, 1})$, see Lemma 10.71.4. OK, and now consider the map $H^ i(\alpha ) \circ H^ i(\beta ) = H^ i(\alpha \circ \beta )$. By the above the map $H^ i(\alpha \circ \beta )$ is the same as the map $H^ i(\text{id}_{G_{\bullet }}) = \text{id}$. Similarly for the composition $H^ i(\beta ) \circ H^ i(\alpha )$. Hence $H^ i(\alpha )$ and $H^ i(\beta )$ are inverses of each other. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 10.71: Ext groups

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00LT. Beware of the difference between the letter 'O' and the digit '0'.