The Stacks project

Lemma 10.79.4. Let $R$ be a ring. Let $\varphi : P_1 \to P_2$ be a map of finite projective modules. Then

  1. The set $U$ of primes $\mathfrak p \in \mathop{\mathrm{Spec}}(R)$ such that $\varphi \otimes \kappa (\mathfrak p)$ is injective is open and for any $f\in R$ such that $D(f) \subset U$ we have

    1. $P_{1, f} \to P_{2, f}$ is injective, and

    2. the module $\mathop{\mathrm{Coker}}(\varphi )_ f$ is finite projective over $R_ f$.

  2. The set $W$ of primes $\mathfrak p \in \mathop{\mathrm{Spec}}(R)$ such that $\varphi \otimes \kappa (\mathfrak p)$ is surjective is open and for any $f\in R$ such that $D(f) \subset W$ we have

    1. $P_{1, f} \to P_{2, f}$ is surjective, and

    2. the module $\mathop{\mathrm{Ker}}(\varphi )_ f$ is finite projective over $R_ f$.

  3. The set $V$ of primes $\mathfrak p \in \mathop{\mathrm{Spec}}(R)$ such that $\varphi \otimes \kappa (\mathfrak p)$ is an isomorphism is open and for any $f\in R$ such that $D(f) \subset V$ the map $\varphi : P_{1, f} \to P_{2, f}$ is an isomorphism of modules over $R_ f$.

Proof. To prove the set $U$ is open we may work locally on $\mathop{\mathrm{Spec}}(R)$. Thus we may replace $R$ by a suitable localization and assume that $P_1 = R^{n_1}$ and $P_2 = R^{n_2}$, see Lemma 10.78.2. In this case injectivity of $\varphi \otimes \kappa (\mathfrak p)$ is equivalent to $n_1 \leq n_2$ and some $n_1 \times n_1$ minor $f$ of the matrix of $\varphi $ being invertible in $\kappa (\mathfrak p)$. Thus $D(f) \subset U$. This argument also shows that $P_{1, \mathfrak p} \to P_{2, \mathfrak p}$ is injective for $\mathfrak p \in U$.

Now suppose $D(f) \subset U$. By the remark in the previous paragraph and Lemma 10.23.1 we see that $P_{1, f} \to P_{2, f}$ is injective, i.e., (1)(a) holds. By Lemma 10.78.2 to prove (1)(b) it suffices to prove that $\mathop{\mathrm{Coker}}(\varphi )$ is finite projective locally on $D(f)$. Thus, as we saw above, we may assume that $P_1 = R^{n_1}$ and $P_2 = R^{n_2}$ and that some minor of the matrix of $\varphi $ is invertible in $R$. If the minor in question corresponds to the first $n_1$ basis vectors of $R^{n_2}$, then using the last $n_2 - n_1$ basis vectors we get a map $R^{n_2 - n_1} \to R^{n_2} \to \mathop{\mathrm{Coker}}(\varphi )$ which is easily seen to be an isomorphism.

Openness of $W$ and (2)(a) for $D(f) \subset W$ follow from Lemma 10.79.1. Since $P_{2, f}$ is projective over $R_ f$ we see that $\varphi _ f : P_{1, f} \to P_{2, f}$ has a section and it follows that $\mathop{\mathrm{Ker}}(\varphi )_ f$ is a direct summand of $P_{2, f}$. Therefore $\mathop{\mathrm{Ker}}(\varphi )_ f$ is finite projective. Thus (2)(b) holds as well.

It is clear that $V = U \cap W$ is open and the other statement in (3) follows from (1)(a) and (2)(a). $\square$


Comments (2)

Comment #2813 by Dario Weißmann on

Typo in the proof of (2)(a): "... for D(f) \subset W".


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00O0. Beware of the difference between the letter 'O' and the digit '0'.