The Stacks project

Lemma 12.24.11. Let $\mathcal{A}$ be an abelian category. Let $(K^\bullet , F)$ be a filtered complex of $\mathcal{A}$. Assume that the filtration on each $K^ n$ is finite (see Definition 12.19.1). Then

  1. the spectral sequence associated to $(K^\bullet , F)$ is bounded,

  2. the filtration on each $H^ n(K^\bullet )$ is finite,

  3. the spectral sequence associated to $(K^\bullet , F)$ converges to $H^*(K^\bullet )$,

  4. if $\mathcal{C} \subset \mathcal{A}$ is a weak Serre subcategory and for some $r$ we have $E_ r^{p, q} \in \mathcal{C}$ for all $p, q \in \mathbf{Z}$, then $H^ n(K^\bullet )$ is in $\mathcal{C}$.

Proof. Part (1) follows as $E_0^{p, n - p} = \text{gr}^ p K^ n$. Part (2) is clear from Equation (12.24.5.1). We will use Lemma 12.24.10 to prove that the spectral sequence weakly converges. Fix $p, n \in \mathbf{Z}$. The right hand side of (12.24.6.1) is equal to $F^ pK^ n \cap \mathop{\mathrm{Ker}}(d) + F^{p + 1}K^ n$ because $F^{p + r}K^ n = 0$ for $r \gg 0$. Thus (12.24.6.1) is an equality. The left hand side of (12.24.6.2) is equal to $F^ pK^ n \cap \mathop{\mathrm{Im}}(d) + F^{p + 1}K^ n$ because $F^{p - r + 1}K^{n - 1} = K^{n - 1}$ for $r \gg 0$. Thus (12.24.6.2) is an equality. Since the filtration on $H^ n(K^\bullet )$ is finite by (2) we see that we have abutment. To prove we have convergence we have to show the spectral sequence is regular which follows as it is bounded (Lemma 12.24.8) and we have to show that $H^ n(K^\bullet ) = \mathop{\mathrm{lim}}\nolimits _ p H^ n(K^\bullet )/F^ pH^ n(K^\bullet )$ which follows from the fact that the filtration on $H^*(K^\bullet )$ is finite proved in part (2).

Proof of (4). Assume that for some $r \geq 0$ we have $E_ r^{p, q} \in \mathcal{C}$ for some weak Serre subcategory $\mathcal{C}$ of $\mathcal{A}$. Then $E_{r + 1}^{p, q}$ is in $\mathcal{C}$ as well, see Lemma 12.10.3. By boundedness proved above (which implies that the spectral sequence is both regular and coregular, see Lemma 12.24.8) we can find an $r' \geq r$ such that $E_\infty ^{p, q} = E_{r'}^{p, q}$ for all $p, q$ with $p + q = n$. Thus $H^ n(K^\bullet )$ is an object of $\mathcal{A}$ which has a finite filtration whose graded pieces are in $\mathcal{C}$. This implies that $H^ n(K^\bullet )$ is in $\mathcal{C}$ by Lemma 12.10.3. $\square$


Comments (2)

Comment #7055 by Xiaolong Liu on

There are some typos in the first paragraph of the proof. Replace "Look at the right hand side of (12.24.6.1) xxx. Thus (12.24.6.1) is an equality. Look at the left hand side of (12.24.6.1). xxxxx. Thus (12.24.6.1) is an equality." by "Look at the right hand side of (12.24.6.1) xxx. Thus (12.24.6.1) is an equality. Look at the left hand side of (12.24.6.2). xxxxx. Thus (12.24.6.2) is an equality."


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 012W. Beware of the difference between the letter 'O' and the digit '0'.