## Tag `01CY`

Chapter 17: Sheaves of Modules > Section 17.22: Invertible modules

Lemma 17.22.10. Let $X$ be a ringed space. Assume that each stalk $\mathcal{O}_{X, x}$ is a local ring with maximal ideal $\mathfrak m_x$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. For any section $s \in \Gamma(X, \mathcal{L})$ the set $$ X_s = \{x \in X \mid \text{image }s \not\in \mathfrak m_x\mathcal{L}_x\} $$ is open in $X$. The map $s : \mathcal{O}_{X_s} \to \mathcal{L}|_{X_s}$ is an isomorphism, and there exists a section $s'$ of $\mathcal{L}^{\otimes -1}$ over $X_s$ such that $s' (s|_{X_s}) = 1$.

Proof.Suppose $x \in X_s$. We have an isomorphism $$ \mathcal{L}_x \otimes_{\mathcal{O}_{X, x}} (\mathcal{L}^{\otimes -1})_x \longrightarrow \mathcal{O}_{X, x} $$ by Lemma 17.22.5. Both $\mathcal{L}_x$ and $(\mathcal{L}^{\otimes -1})_x$ are free $\mathcal{O}_{X, x}$-modules of rank $1$. We conclude from Algebra, Nakayama's Lemma 10.19.1 that $s_x$ is a basis for $\mathcal{L}_x$. Hence there exists a basis element $t_x \in (\mathcal{L}^{\otimes -1})_x$ such that $s_x \otimes t_x$ maps to $1$. Choose an open neighbourhood $U$ of $x$ such that $t_x$ comes from a section $t$ of $\mathcal{L}^{\otimes -1}$ over $U$ and such that $s \otimes t$ maps to $1 \in \mathcal{O}_X(U)$. Clearly, for every $x' \in U$ we see that $s$ generates the module $\mathcal{L}_{x'}$. Hence $U \subset X_s$. This proves that $X_s$ is open. Moreover, the section $t$ constructed over $U$ above is unique, and hence these glue to give te section $s'$ of the lemma. $\square$

The code snippet corresponding to this tag is a part of the file `modules.tex` and is located in lines 3847–3859 (see updates for more information).

```
\begin{lemma}
\label{lemma-s-open}
Let $X$ be a ringed space. Assume that each stalk $\mathcal{O}_{X, x}$
is a local ring with maximal ideal $\mathfrak m_x$.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
For any section $s \in \Gamma(X, \mathcal{L})$ the set
$$
X_s = \{x \in X \mid \text{image }s \not\in \mathfrak m_x\mathcal{L}_x\}
$$
is open in $X$. The map $s : \mathcal{O}_{X_s} \to \mathcal{L}|_{X_s}$
is an isomorphism, and there exists a section $s'$
of $\mathcal{L}^{\otimes -1}$ over $X_s$ such that $s' (s|_{X_s}) = 1$.
\end{lemma}
\begin{proof}
Suppose $x \in X_s$.
We have an isomorphism
$$
\mathcal{L}_x \otimes_{\mathcal{O}_{X, x}} (\mathcal{L}^{\otimes -1})_x
\longrightarrow
\mathcal{O}_{X, x}
$$
by Lemma \ref{lemma-constructions-invertible}.
Both $\mathcal{L}_x$ and $(\mathcal{L}^{\otimes -1})_x$
are free $\mathcal{O}_{X, x}$-modules of rank $1$. We conclude
from Algebra, Nakayama's Lemma \ref{algebra-lemma-NAK} that
$s_x$ is a basis for $\mathcal{L}_x$. Hence there exists
a basis element $t_x \in (\mathcal{L}^{\otimes -1})_x$
such that $s_x \otimes t_x$ maps to $1$.
Choose an open neighbourhood $U$ of
$x$ such that $t_x$ comes from a section $t$
of $\mathcal{L}^{\otimes -1}$ over $U$ and such that
$s \otimes t$ maps to $1 \in \mathcal{O}_X(U)$.
Clearly, for every $x' \in U$ we see that $s$ generates
the module $\mathcal{L}_{x'}$. Hence $U \subset X_s$.
This proves that $X_s$ is open. Moreover, the section
$t$ constructed over $U$ above is unique, and hence
these glue to give te section $s'$ of the lemma.
\end{proof}
```

## Comments (2)

## Add a comment on tag `01CY`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.