The Stacks project

Lemma 26.7.8. Let $(X, \mathcal{O}_ X) = (\mathop{\mathrm{Spec}}(R), \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ be an affine scheme. Suppose that

\[ 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \]

is a short exact sequence of sheaves of $\mathcal{O}_ X$-modules. If two out of three are quasi-coherent then so is the third.

Proof. This is clear in case both $\mathcal{F}_1$ and $\mathcal{F}_2$ are quasi-coherent because the functor $M \mapsto \widetilde M$ is exact, see Lemma 26.5.4. Similarly in case both $\mathcal{F}_2$ and $\mathcal{F}_3$ are quasi-coherent. Now, suppose that $\mathcal{F}_1 = \widetilde M_1$ and $\mathcal{F}_3 = \widetilde M_3$ are quasi-coherent. Set $M_2 = \Gamma (X, \mathcal{F}_2)$. We claim it suffices to show that the sequence

\[ 0 \to M_1 \to M_2 \to M_3 \to 0 \]

is exact. Namely, if this is the case, then (by using the mapping property of Lemma 26.7.1) we get a commutative diagram

\[ \xymatrix{ 0 \ar[r] & \widetilde M_1 \ar[r] \ar[d] & \widetilde M_2 \ar[r] \ar[d] & \widetilde M_3 \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{F}_1 \ar[r] & \mathcal{F}_2 \ar[r] & \mathcal{F}_3 \ar[r] & 0 } \]

and we win by the snake lemma.

The “correct” argument here would be to show first that $H^1(X, \mathcal{F}) = 0$ for any quasi-coherent sheaf $\mathcal{F}$. This is actually not all that hard, but it is perhaps better to postpone this till later. Instead we use a small trick.

Pick $m \in M_3 = \Gamma (X, \mathcal{F}_3)$. Consider the following set

\[ I = \{ f \in R \mid \text{the element }fm\text{ comes from }M_2\} . \]

Clearly this is an ideal. It suffices to show $1 \in I$. Hence it suffices to show that for any prime $\mathfrak p$ there exists an $f \in I$, $f \not\in \mathfrak p$. Let $x \in X$ be the point corresponding to $\mathfrak p$. Because surjectivity can be checked on stalks there exists an open neighbourhood $U$ of $x$ such that $m|_ U$ comes from a local section $s \in \mathcal{F}_2(U)$. In fact we may assume that $U = D(f)$ is a standard open, i.e., $f \in R$, $f \not\in \mathfrak p$. We will show that for some $N \gg 0$ we have $f^ N \in I$, which will finish the proof.

Take any point $z \in V(f)$, say corresponding to the prime $\mathfrak q \subset R$. We can also find a $g \in R$, $g \not\in \mathfrak q$ such that $m|_{D(g)}$ lifts to some $s' \in \mathcal{F}_2(D(g))$. Consider the difference $s|_{D(fg)} - s'|_{D(fg)}$. This is an element $m'$ of $\mathcal{F}_1(D(fg)) = (M_1)_{fg}$. For some integer $n = n(z)$ the element $f^ n m'$ comes from some $m'_1 \in (M_1)_ g$. We see that $f^ n s$ extends to a section $\sigma $ of $\mathcal{F}_2$ on $D(f) \cup D(g)$ because it agrees with the restriction of $f^ n s' + m'_1$ on $D(f) \cap D(g) = D(fg)$. Moreover, $\sigma $ maps to the restriction of $f^ n m$ to $D(f) \cup D(g)$.

Since $V(f)$ is quasi-compact, there exists a finite list of elements $g_1, \ldots , g_ m \in R$ such that $V(f) \subset \bigcup D(g_ j)$, an integer $n > 0$ and sections $\sigma _ j \in \mathcal{F}_2(D(f) \cup D(g_ j))$ such that $\sigma _ j|_{D(f)} = f^ n s$ and $\sigma _ j$ maps to the section $f^ nm|_{D(f) \cup D(g_ j)}$ of $\mathcal{F}_3$. Consider the differences

\[ \sigma _ j|_{D(f) \cup D(g_ jg_ k)} - \sigma _ k|_{D(f) \cup D(g_ jg_ k)}. \]

These correspond to sections of $\mathcal{F}_1$ over $D(f) \cup D(g_ jg_ k)$ which are zero on $D(f)$. In particular their images in $\mathcal{F}_1(D(g_ jg_ k)) = (M_1)_{g_ jg_ k}$ are zero in $(M_1)_{g_ jg_ kf}$. Thus some high power of $f$ kills each and every one of these. In other words, the elements $f^ N \sigma _ j$, for some $N \gg 0$ satisfy the glueing condition of the sheaf property and give rise to a section $\sigma $ of $\mathcal{F}_2$ over $\bigcup (D(f) \cup D(g_ j)) = X$ as desired. $\square$


Comments (2)

Comment #5685 by Laurent Moret-Bailly on

Typo in statement: sheaves of -modules

There are also:

  • 5 comment(s) on Section 26.7: Quasi-coherent sheaves on affines

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01IE. Beware of the difference between the letter 'O' and the digit '0'.