# The Stacks Project

## Tag 01U6

Lemma 28.24.4. Let $X \to Y \to Z$ be morphisms of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $x \in X$ with image $y$ in $Y$. If $\mathcal{F}$ is flat over $Y$ at $x$, and $Y$ is flat over $Z$ at $y$, then $\mathcal{F}$ is flat over $Z$ at $x$.

Proof. See Algebra, Lemma 10.38.4. $\square$

The code snippet corresponding to this tag is a part of the file morphisms.tex and is located in lines 4282–4288 (see updates for more information).

\begin{lemma}
\label{lemma-composition-module-flat}
Let $X \to Y \to Z$ be morphisms of schemes. Let $\mathcal{F}$ be a
quasi-coherent $\mathcal{O}_X$-module. Let $x \in X$ with image $y$ in $Y$.
If $\mathcal{F}$ is flat over $Y$ at $x$, and $Y$ is flat over $Z$ at
$y$, then $\mathcal{F}$ is flat over $Z$ at $x$.
\end{lemma}

\begin{proof}
See Algebra, Lemma \ref{algebra-lemma-composition-flat}.
\end{proof}

There are no comments yet for this tag.

There are also 2 comments on Section 28.24: Morphisms of Schemes.

## Add a comment on tag 01U6

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following box. So in case this where tag 0321 you just have to write 0321. Beware of the difference between the letter 'O' and the digit 0.

This captcha seems more appropriate than the usual illegible gibberish, right?