# The Stacks Project

## Tag 023W

Definition 34.31.3. Let $S$ be a scheme. Let $\{X_i \to S\}_{i \in I}$ be a family of morphisms with target $S$.

1. A descent datum $(V_i, \varphi_{ij})$ relative to the family $\{X_i \to S\}$ is given by a scheme $V_i$ over $X_i$ for each $i \in I$, an isomorphism $\varphi_{ij} : V_i \times_S X_j \to X_i \times_S V_j$ of schemes over $X_i \times_S X_j$ for each pair $(i, j) \in I^2$ such that for every triple of indices $(i, j, k) \in I^3$ the diagram $$\xymatrix{ V_i \times_S X_j \times_S X_k \ar[rd]^{\text{pr}_{01}^*\varphi_{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi_{ik}} & & X_i \times_S X_j \times_S V_k\\ & X_i \times_S V_j \times_S X_k \ar[ru]^{\text{pr}_{12}^*\varphi_{jk}} }$$ of schemes over $X_i \times_S X_j \times_S X_k$ commutes (with obvious notation).
2. A morphism $\psi : (V_i, \varphi_{ij}) \to (V'_i, \varphi'_{ij})$ of descent data is given by a family $\psi = (\psi_i)_{i \in I}$ of morphisms of $X_i$-schemes $\psi_i : V_i \to V'_i$ such that all the diagrams $$\xymatrix{ V_i \times_S X_j \ar[r]_{\varphi_{ij}} \ar[d]_{\psi_i \times \text{id}} & X_i \times_S V_j \ar[d]^{\text{id} \times \psi_j} \\ V'_i \times_S X_j \ar[r]^{\varphi'_{ij}} & X_i \times_S V'_j }$$ commute.

The code snippet corresponding to this tag is a part of the file descent.tex and is located in lines 7196–7236 (see updates for more information).

\begin{definition}
\label{definition-descent-datum-for-family-of-morphisms}
Let $S$ be a scheme.
Let $\{X_i \to S\}_{i \in I}$ be a family of morphisms with target $S$.
\begin{enumerate}
\item A {\it descent datum $(V_i, \varphi_{ij})$ relative to the
family $\{X_i \to S\}$} is given by a scheme $V_i$ over $X_i$
for each $i \in I$, an isomorphism
$\varphi_{ij} : V_i \times_S X_j \to X_i \times_S V_j$
of schemes over $X_i \times_S X_j$ for each pair $(i, j) \in I^2$
such that for every triple of indices $(i, j, k) \in I^3$
the diagram
$$\xymatrix{ V_i \times_S X_j \times_S X_k \ar[rd]^{\text{pr}_{01}^*\varphi_{ij}} \ar[rr]_{\text{pr}_{02}^*\varphi_{ik}} & & X_i \times_S X_j \times_S V_k\\ & X_i \times_S V_j \times_S X_k \ar[ru]^{\text{pr}_{12}^*\varphi_{jk}} }$$
of schemes over $X_i \times_S X_j \times_S X_k$ commutes
(with obvious notation).
\item A {\it morphism
$\psi : (V_i, \varphi_{ij}) \to (V'_i, \varphi'_{ij})$
of descent data} is given by a family
$\psi = (\psi_i)_{i \in I}$ of morphisms of
$X_i$-schemes $\psi_i : V_i \to V'_i$ such that all the diagrams
$$\xymatrix{ V_i \times_S X_j \ar[r]_{\varphi_{ij}} \ar[d]_{\psi_i \times \text{id}} & X_i \times_S V_j \ar[d]^{\text{id} \times \psi_j} \\ V'_i \times_S X_j \ar[r]^{\varphi'_{ij}} & X_i \times_S V'_j }$$
commute.
\end{enumerate}
\end{definition}

There are no comments yet for this tag.

## Add a comment on tag 023W

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).