# The Stacks Project

## Tag 02JS

Lemma 28.27.2. Let $f : X \to Y$ and $g : Y \to S$ be morphisms of schemes. Let $x \in X$ and set $y = f(x)$, $s = g(y)$. Assume $f$ and $g$ locally of finite type. Then $$\dim_x(X_s) \leq \dim_x(X_y) + \dim_y(Y_s).$$ Moreover, equality holds if $\mathcal{O}_{X_s, x}$ is flat over $\mathcal{O}_{Y_s, y}$, which holds for example if $\mathcal{O}_{X, x}$ is flat over $\mathcal{O}_{Y, y}$.

Proof. Note that $\text{trdeg}_{\kappa(s)}(\kappa(x)) = \text{trdeg}_{\kappa(y)}(\kappa(x)) + \text{trdeg}_{\kappa(s)}(\kappa(y))$. Thus by Lemma 28.27.1 the statement is equivalent to $$\dim(\mathcal{O}_{X_s, x}) \leq \dim(\mathcal{O}_{X_y, x}) + \dim(\mathcal{O}_{Y_s, y}).$$ For this see Algebra, Lemma 10.111.6. For the flat case see Algebra, Lemma 10.111.7. $\square$

The code snippet corresponding to this tag is a part of the file morphisms.tex and is located in lines 4916–4928 (see updates for more information).

\begin{lemma}
Let $f : X \to Y$ and $g : Y \to S$ be morphisms of schemes.
Let $x \in X$ and set $y = f(x)$, $s = g(y)$.
Assume $f$ and $g$ locally of finite type.
Then
$$\dim_x(X_s) \leq \dim_x(X_y) + \dim_y(Y_s).$$
Moreover, equality holds if $\mathcal{O}_{X_s, x}$ is flat
over $\mathcal{O}_{Y_s, y}$, which holds for example if $\mathcal{O}_{X, x}$
is flat over $\mathcal{O}_{Y, y}$.
\end{lemma}

\begin{proof}
Note that $\text{trdeg}_{\kappa(s)}(\kappa(x)) = \text{trdeg}_{\kappa(y)}(\kappa(x)) + \text{trdeg}_{\kappa(s)}(\kappa(y))$.
Thus by Lemma \ref{lemma-dimension-fibre-at-a-point} the statement
is equivalent to
$$\dim(\mathcal{O}_{X_s, x}) \leq \dim(\mathcal{O}_{X_y, x}) + \dim(\mathcal{O}_{Y_s, y}).$$
For this see Algebra, Lemma \ref{algebra-lemma-dimension-base-fibre-total}.
For the flat case see
Algebra, Lemma \ref{algebra-lemma-dimension-base-fibre-equals-total}.
\end{proof}

There are no comments yet for this tag.

## Add a comment on tag 02JS

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).