# The Stacks Project

## Tag 02JZ

Lemma 28.24.12. Let $h : X \to Y$ be a morphism of schemes over $S$. Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$. Let $x \in X$ with $y = h(x) \in Y$. If $h$ is flat at $x$, then $$\mathcal{G}\text{ flat over }S\text{ at }y \Leftrightarrow h^*\mathcal{G}\text{ flat over }S\text{ at }x.$$ In particular: If $h$ is surjective and flat, then $\mathcal{G}$ is flat over $S$, if and only if $h^*\mathcal{G}$ is flat over $S$. If $h$ is surjective and flat, and $X$ is flat over $S$, then $Y$ is flat over $S$.

Proof. You can prove this by applying Algebra, Lemma 10.38.9. Here is a direct proof. Let $s \in S$ be the image of $y$. Consider the local ring maps $\mathcal{O}_{S, s} \to \mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$. By assumption the ring map $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$ is faithfully flat, see Algebra, Lemma 10.38.17. Let $N = \mathcal{G}_y$. Note that $h^*\mathcal{G}_x = N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}$, see Sheaves, Lemma 6.26.4. Let $M' \to M$ be an injection of $\mathcal{O}_{S, s}$-modules. By the faithful flatness mentioned above we have \begin{align*} \mathop{\rm Ker}( M' \otimes_{\mathcal{O}_{S, s}} N \to M \otimes_{\mathcal{O}_{S, s}} N) \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x} \\ = \mathop{\rm Ker}( M' \otimes_{\mathcal{O}_{S, s}} N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x} \to M \otimes_{\mathcal{O}_{S, s}} N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}) \end{align*} Hence the equivalence of the lemma follows from the second characterization of flatness in Algebra, Lemma 10.38.5. $\square$

The code snippet corresponding to this tag is a part of the file morphisms.tex and is located in lines 4413–4427 (see updates for more information).

\begin{lemma}
\label{lemma-flat-permanence}
Let $h : X \to Y$ be a morphism of schemes over $S$.
Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$.
Let $x \in X$ with $y = h(x) \in Y$. If $h$ is flat at $x$, then
$$\mathcal{G}\text{ flat over }S\text{ at }y \Leftrightarrow h^*\mathcal{G}\text{ flat over }S\text{ at }x.$$
In particular: If $h$ is surjective and flat, then
$\mathcal{G}$ is flat over $S$, if and only if
$h^*\mathcal{G}$ is flat over $S$. If $h$ is surjective and
flat, and $X$ is flat over $S$, then $Y$ is flat over $S$.
\end{lemma}

\begin{proof}
You can prove this by applying
Algebra, Lemma \ref{algebra-lemma-flatness-descends-more-general}.
Here is a direct proof. Let $s \in S$ be the image of $y$.
Consider the local ring maps
$\mathcal{O}_{S, s} \to \mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$.
By assumption the ring map $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$
is faithfully flat, see
Algebra, Lemma \ref{algebra-lemma-local-flat-ff}.
Let $N = \mathcal{G}_y$. Note that
$h^*\mathcal{G}_x = N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}$, see
Sheaves, Lemma \ref{sheaves-lemma-stalk-pullback-modules}.
Let $M' \to M$ be an injection of $\mathcal{O}_{S, s}$-modules.
By the faithful flatness mentioned above we have
\begin{align*}
\Ker(
M' \otimes_{\mathcal{O}_{S, s}} N \to M \otimes_{\mathcal{O}_{S, s}} N)
\otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x} \\
=
\Ker(
M' \otimes_{\mathcal{O}_{S, s}} N
\otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}
\to
M \otimes_{\mathcal{O}_{S, s}} N
\otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x})
\end{align*}
Hence the equivalence of the lemma follows from the second characterization
of flatness in
Algebra, Lemma \ref{algebra-lemma-flat}.
\end{proof}

There are no comments yet for this tag.

There are also 2 comments on Section 28.24: Morphisms of Schemes.

## Add a comment on tag 02JZ

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).