The Stacks project

Lemma 30.20.4. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $f : X \to \mathop{\mathrm{Spec}}(A)$ be a proper morphism. Let $\mathcal{F}$ be a coherent sheaf on $X$. Fix $p \geq 0$. There exists a $c \geq 0$ such that

  1. for all $n \geq c$ we have

    \[ \mathop{\mathrm{Ker}}(H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F})) \subset I^{n - c}H^ p(X, \mathcal{F}). \]
  2. the inverse system

    \[ \left(H^ p(X, \mathcal{F}/I^ n\mathcal{F})\right)_{n \in \mathbf{N}} \]

    satisfies the Mittag-Leffler condition (see Homology, Definition 12.31.2), and

  3. we have

    \[ \mathop{\mathrm{Im}}(H^ p(X, \mathcal{F}/I^ k\mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F})) = \mathop{\mathrm{Im}}(H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F})) \]

    for all $k \geq n + c$.

Proof. Let $c = \max \{ c_ p, c_{p + 1}\} $, where $c_ p, c_{p + 1}$ are the integers found in Lemma 30.20.3 for $H^ p$ and $H^{p + 1}$.

Let us prove part (1). Consider the short exact sequence

\[ 0 \to I^ n\mathcal{F} \to \mathcal{F} \to \mathcal{F}/I^ n\mathcal{F} \to 0 \]

From the long exact cohomology sequence we see that

\[ \mathop{\mathrm{Ker}}( H^ p(X, \mathcal{F}) \to H^ p(X, \mathcal{F}/I^ n\mathcal{F}) ) = \mathop{\mathrm{Im}}( H^ p(X, I^ n\mathcal{F}) \to H^ p(X, \mathcal{F}) ) \]

Hence by Lemma 30.20.3 part (2) we see that this is contained in $I^{n - c}H^ p(X, \mathcal{F})$ for $n \geq c$.

Note that part (3) implies part (2) by definition of the Mittag-Leffler systems.

Let us prove part (3). Fix an $n$. Consider the commutative diagram

\[ \xymatrix{ 0 \ar[r] & I^ n\mathcal{F} \ar[r] & \mathcal{F} \ar[r] & \mathcal{F}/I^ n\mathcal{F} \ar[r] & 0 \\ 0 \ar[r] & I^{n + m}\mathcal{F} \ar[r] \ar[u] & \mathcal{F} \ar[r] \ar[u] & \mathcal{F}/I^{n + m}\mathcal{F} \ar[r] \ar[u] & 0 } \]

This gives rise to the following commutative diagram

\[ \xymatrix{ H^ p(X, \mathcal{F}) \ar[r] & H^ p(X, \mathcal{F}/I^ n\mathcal{F}) \ar[r]_\delta & H^{p + 1}(X, I^ n\mathcal{F}) \ar[r] & H^{p + 1}(X, \mathcal{F}) \\ H^ p(X, \mathcal{F}) \ar[r] \ar[u]^1 & H^ p(X, \mathcal{F}/I^{n + m}\mathcal{F}) \ar[r] \ar[u]^\gamma & H^{p + 1}(X, I^{n + m}\mathcal{F}) \ar[u]^\alpha \ar[r]^-\beta & H^{p + 1}(X, \mathcal{F}) \ar[u]_1 } \]

with exact rows. By Lemma 30.20.3 part (4) the kernel of $\beta $ is equal to the kernel of $\alpha $ for $m \geq c$. By a diagram chase this shows that the image of $\gamma $ is contained in the kernel of $\delta $ which shows that part (3) is true (set $k = n + m$ to get it). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02OB. Beware of the difference between the letter 'O' and the digit '0'.