The Stacks project

Lemma 42.68.5. Let $R$ be a local ring with maximal ideal $\mathfrak m$ and residue field $\kappa $. Let $M$ be a finite length $R$-module. The determinant $\det _\kappa (M)$ defined above is a $\kappa $-vector space of dimension $1$. It is generated by the symbol $[f_1, \ldots , f_ l]$ for any admissible sequence such that $\langle f_1, \ldots f_ l \rangle = M$.

Proof. We know $\det _\kappa (M)$ has dimension at most $1$, and in fact that it is generated by $[f_1, \ldots , f_ l]$, by Lemma 42.68.3 and its proof. We will show by induction on $l = \text{length}(M)$ that it is nonzero. For $l = 1$ it follows from Lemma 42.68.4. Choose a nonzero element $f \in M$ with $\mathfrak m f = 0$. Set $\overline{M} = M /\langle f \rangle $, and denote the quotient map $x \mapsto \overline{x}$. We will define a surjective map

\[ \psi : \det \nolimits _ k(M) \to \det \nolimits _\kappa (\overline{M}) \]

which will prove the lemma since by induction the determinant of $\overline{M}$ is nonzero.

We define $\psi $ on symbols as follows. Let $(e_1, \ldots , e_ l)$ be an admissible sequence. If $f \not\in \langle e_1, \ldots , e_ l \rangle $ then we simply set $\psi ([e_1, \ldots , e_ l]) = 0$. If $f \in \langle e_1, \ldots , e_ l \rangle $ then we choose an $i$ minimal such that $f \in \langle e_1, \ldots , e_ i \rangle $. We may write $e_ i = \lambda f + x$ for some unit $\lambda \in R$ and $x \in \langle e_1, \ldots , e_{i - 1} \rangle $. In this case we set

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^ i \overline{\lambda }[\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l]. \]

Note that it is indeed the case that $(\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l)$ is an admissible sequence in $\overline{M}$, so this makes sense. Let us show that extending this rule $\kappa $-linearly to linear combinations of symbols does indeed lead to a map on determinants. To do this we have to show that the admissible relations are mapped to zero.

Type (a) relations. Suppose we have $(e_1, \ldots , e_ l)$ an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a \in \langle e_1, \ldots , e_{a - 1}\rangle $. Suppose that $f \in \langle e_1, \ldots , e_ i\rangle $ with $i$ minimal. Then $i \not= a$ and $\overline{e}_ a \in \langle \overline{e}_1, \ldots , \hat{\overline{e}_ i}, \ldots , \overline{e}_{a - 1}\rangle $ if $i < a$ or $\overline{e}_ a \in \langle \overline{e}_1, \ldots , \overline{e}_{a - 1}\rangle $ if $i > a$. Thus the same admissible relation for $\det _\kappa (\overline{M})$ forces the symbol $[\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l]$ to be zero as desired.

Type (b) relations. Suppose we have $(e_1, \ldots , e_ l)$ an admissible sequence and for some $1 \leq a \leq l$ we have $e_ a = \lambda e'_ a + x$ with $\lambda \in R^*$, and $x \in \langle e_1, \ldots , e_{a - 1}\rangle $. Suppose that $f \in \langle e_1, \ldots , e_ i\rangle $ with $i$ minimal. Say $e_ i = \mu f + y$ with $y \in \langle e_1, \ldots , e_{i - 1}\rangle $. If $i < a$ then the desired equality is

\[ (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_{a - 1}, \overline{e}'_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

which follows from $\overline{e}_ a = \lambda \overline{e}'_ a + \overline{x}$ and the corresponding admissible relation for $\det _\kappa (\overline{M})$. If $i > a$ then the desired equality is

\[ (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}'_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \]

which follows from $\overline{e}_ a = \lambda \overline{e}'_ a + \overline{x}$ and the corresponding admissible relation for $\det _\kappa (\overline{M})$. The interesting case is when $i = a$. In this case we have $e_ a = \lambda e'_ a + x = \mu f + y$. Hence also $e'_ a = \lambda ^{-1}(\mu f + y - x)$. Thus we see that

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^ i \overline{\mu } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] = \psi ( \overline{\lambda } [e_1, \ldots , e_{a - 1}, e'_ a, e_{a + 1}, \ldots , e_ l] ) \]

as desired.

Type (c) relations. Suppose that $(e_1, \ldots , e_ l)$ is an admissible sequence and $\mathfrak m e_ a \subset \langle e_1, \ldots , e_{a - 2}\rangle $. Suppose that $f \in \langle e_1, \ldots , e_ i\rangle $ with $i$ minimal. Say $e_ i = \lambda f + x$ with $x \in \langle e_1, \ldots , e_{i - 1}\rangle $. We distinguish $4$ cases:

Case 1: $i < a - 1$. The desired equality is

\begin{align*} & (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \\ & = (-1)^{i + 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \end{align*}

which follows from the type (c) admissible relation for $\det _\kappa (\overline{M})$.

Case 2: $i > a$. The desired equality is

\begin{align*} & (-1)^ i \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \\ & = (-1)^{i + 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_{i - 1}, \overline{e}_{i + 1}, \ldots , \overline{e}_ l] \end{align*}

which follows from the type (c) admissible relation for $\det _\kappa (\overline{M})$.

Case 3: $i = a$. We write $e_ a = \lambda f + \mu e_{a - 1} + y$ with $y \in \langle e_1, \ldots , e_{a - 2}\rangle $. Then

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^ a \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

by definition. If $\overline{\mu }$ is nonzero, then we have $e_{a - 1} = - \mu ^{-1} \lambda f + \mu ^{-1}e_ a - \mu ^{-1} y$ and we obtain

\[ \psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^ a \overline{\mu ^{-1}\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

by definition. Since in $\overline{M}$ we have $\overline{e}_ a = \mu \overline{e}_{a - 1} + \overline{y}$ we see the two outcomes are equal by relation (a) for $\det _\kappa (\overline{M})$. If on the other hand $\overline{\mu }$ is zero, then we can write $e_ a = \lambda f + y$ with $y \in \langle e_1, \ldots , e_{a - 2}\rangle $ and we have

\[ \psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^ a \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 1}, \overline{e}_{a + 1}, \ldots , \overline{e}_ l] \]

which is equal to $\psi ([e_1, \ldots , e_ l])$.

Case 4: $i = a - 1$. Here we have

\[ \psi ([e_1, \ldots , e_ l]) = (-1)^{a - 1} \overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \ldots , \overline{e}_ l] \]

by definition. If $f \not\in \langle e_1, \ldots , e_{a - 2}, e_ a \rangle $ then

\[ \psi (-[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) = (-1)^{a + 1}\overline{\lambda } [\overline{e}_1, \ldots , \overline{e}_{a - 2}, \overline{e}_ a, \ldots , \overline{e}_ l] \]

Since $(-1)^{a - 1} = (-1)^{a + 1}$ the two expressions are the same. Finally, assume $f \in \langle e_1, \ldots , e_{a - 2}, e_ a \rangle $. In this case we see that $e_{a - 1} = \lambda f + x$ with $x \in \langle e_1, \ldots , e_{a - 2}\rangle $ and $e_ a = \mu f + y$ with $y \in \langle e_1, \ldots , e_{a - 2}\rangle $ for units $\lambda , \mu \in R$. We conclude that both $e_ a \in \langle e_1, \ldots , e_{a - 1} \rangle $ and $e_{a - 1} \in \langle e_1, \ldots , e_{a - 2}, e_ a\rangle $. In this case a relation of type (a) applies to both $[e_1, \ldots , e_ l]$ and $[e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]$ and the compatibility of $\psi $ with these shown above to see that both

\[ \psi ([e_1, \ldots , e_ l]) \quad \text{and}\quad \psi ([e_1, \ldots , e_{a - 2}, e_ a, e_{a - 1}, e_{a + 1}, \ldots , e_ l]) \]

are zero, as desired.

At this point we have shown that $\psi $ is well defined, and all that remains is to show that it is surjective. To see this let $(\overline{f}_2, \ldots , \overline{f}_ l)$ be an admissible sequence in $\overline{M}$. We can choose lifts $f_2, \ldots , f_ l \in M$, and then $(f, f_2, \ldots , f_ l)$ is an admissible sequence in $M$. Since $\psi ([f, f_2, \ldots , f_ l]) = [f_2, \ldots , f_ l]$ we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02P9. Beware of the difference between the letter 'O' and the digit '0'.