The Stacks project

Lemma 42.68.24. Let $R$ be a local ring with residue field $\kappa $. Let $M$ be a finite length $R$-module. Let $\alpha , \beta , \gamma $ be endomorphisms of $M$. Assume that

  1. $I_\alpha = K_{\beta \gamma }$, and similarly for any permutation of $\alpha , \beta , \gamma $,

  2. $K_\alpha = I_{\beta \gamma }$, and similarly for any permutation of $\alpha , \beta , \gamma $.

Then

  1. The triple $(M, \alpha , \beta \gamma )$ is an exact $(2, 1)$-periodic complex.

  2. The triple $(I_\gamma , \alpha , \beta )$ is an exact $(2, 1)$-periodic complex.

  3. The triple $(M/K_\beta , \alpha , \gamma )$ is an exact $(2, 1)$-periodic complex.

  4. We have

    \[ \det \nolimits _\kappa (M, \alpha , \beta \gamma ) = \det \nolimits _\kappa (I_\gamma , \alpha , \beta ) \det \nolimits _\kappa (M/K_\beta , \alpha , \gamma ). \]

Proof. It is clear that the assumptions imply part (1) of the lemma.

To see part (1) note that the assumptions imply that $I_{\gamma \alpha } = I_{\alpha \gamma }$, and similarly for kernels and any other pair of morphisms. Moreover, we see that $I_{\gamma \beta } =I_{\beta \gamma } = K_\alpha \subset I_\gamma $ and similarly for any other pair. In particular we get a short exact sequence

\[ 0 \to I_{\beta \gamma } \to I_\gamma \xrightarrow {\alpha } I_{\alpha \gamma } \to 0 \]

and similarly we get a short exact sequence

\[ 0 \to I_{\alpha \gamma } \to I_\gamma \xrightarrow {\beta } I_{\beta \gamma } \to 0. \]

This proves $(I_\gamma , \alpha , \beta )$ is an exact $(2, 1)$-periodic complex. Hence part (2) of the lemma holds.

To see that $\alpha $, $\gamma $ give well defined endomorphisms of $M/K_\beta $ we have to check that $\alpha (K_\beta ) \subset K_\beta $ and $\gamma (K_\beta ) \subset K_\beta $. This is true because $\alpha (K_\beta ) = \alpha (I_{\gamma \alpha }) = I_{\alpha \gamma \alpha } \subset I_{\alpha \gamma } = K_\beta $, and similarly in the other case. The kernel of the map $\alpha : M/K_\beta \to M/K_\beta $ is $K_{\beta \alpha }/K_\beta = I_\gamma /K_\beta $. Similarly, the kernel of $\gamma : M/K_\beta \to M/K_\beta $ is equal to $I_\alpha /K_\beta $. Hence we conclude that (3) holds.

We introduce $r = \text{length}_ R(K_\alpha )$, $s = \text{length}_ R(K_\beta )$ and $t = \text{length}_ R(K_\gamma )$. By the exact sequences above and our hypotheses we have $\text{length}_ R(I_\alpha ) = s + t$, $\text{length}_ R(I_\beta ) = r + t$, $\text{length}_ R(I_\gamma ) = r + s$, and $\text{length}(M) = r + s + t$. Choose

  1. an admissible sequence $x_1, \ldots , x_ r \in K_\alpha $ generating $K_\alpha $

  2. an admissible sequence $y_1, \ldots , y_ s \in K_\beta $ generating $K_\beta $,

  3. an admissible sequence $z_1, \ldots , z_ t \in K_\gamma $ generating $K_\gamma $,

  4. elements $\tilde x_ i \in M$ such that $\beta \gamma \tilde x_ i = x_ i$,

  5. elements $\tilde y_ i \in M$ such that $\alpha \gamma \tilde y_ i = y_ i$,

  6. elements $\tilde z_ i \in M$ such that $\beta \alpha \tilde z_ i = z_ i$.

With these choices the sequence $y_1, \ldots , y_ s, \alpha \tilde z_1, \ldots , \alpha \tilde z_ t$ is an admissible sequence in $I_\alpha $ generating it. Hence, by Remark 42.68.14 the determinant $D = \det _\kappa (M, \alpha , \beta \gamma )$ is the unique element of $\kappa ^*$ such that

\begin{align*} [y_1, \ldots , y_ s, \alpha \tilde z_1, \ldots , \alpha \tilde z_ s, \tilde x_1, \ldots , \tilde x_ r] \\ = (-1)^{r(s + t)} D [x_1, \ldots , x_ r, \gamma \tilde y_1, \ldots , \gamma \tilde y_ s, \tilde z_1, \ldots , \tilde z_ t] \end{align*}

By the same remark, we see that $D_1 = \det _\kappa (M/K_\beta , \alpha , \gamma )$ is characterized by

\[ [y_1, \ldots , y_ s, \alpha \tilde z_1, \ldots , \alpha \tilde z_ t, \tilde x_1, \ldots , \tilde x_ r] = (-1)^{rt} D_1 [y_1, \ldots , y_ s, \gamma \tilde x_1, \ldots , \gamma \tilde x_ r, \tilde z_1, \ldots , \tilde z_ t] \]

By the same remark, we see that $D_2 = \det _\kappa (I_\gamma , \alpha , \beta )$ is characterized by

\[ [y_1, \ldots , y_ s, \gamma \tilde x_1, \ldots , \gamma \tilde x_ r, \tilde z_1, \ldots , \tilde z_ t] = (-1)^{rs} D_2 [x_1, \ldots , x_ r, \gamma \tilde y_1, \ldots , \gamma \tilde y_ s, \tilde z_1, \ldots , \tilde z_ t] \]

Combining the formulas above we see that $D = D_1 D_2$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02PU. Beware of the difference between the letter 'O' and the digit '0'.