The Stacks Project


Tag 02Z5

Chapter 56: Algebraic Spaces > Section 56.14: Examples of algebraic spaces

Lemma 56.14.6. Notation and assumptions as in Lemma 56.14.3. If $\mathop{\rm Spec}(k) \to U/G$ is a morphism, then there exist

  1. a finite Galois extension $k'/k$,
  2. a finite subgroup $H \subset G$,
  3. an isomorphism $H \to \text{Gal}(k'/k)$, and
  4. an $H$-equivariant morphism $\mathop{\rm Spec}(k') \to U$.

Conversely, such data determine a morphism $\mathop{\rm Spec}(k) \to U/G$.

Proof. Consider the fibre product $V = \mathop{\rm Spec}(k) \times_{U/G} U$. Here is a diagram $$ \xymatrix{ V \ar[r] \ar[d] & U \ar[d] \\ \mathop{\rm Spec}(k) \ar[r] & U/G } $$ Then $V$ is a nonempty scheme étale over $\mathop{\rm Spec}(k)$ and hence is a disjoint union $V = \coprod_{i \in I} \mathop{\rm Spec}(k_i)$ of spectra of fields $k_i$ finite separable over $k$ (Morphisms, Lemma 28.34.7). We have \begin{align*} V \times_{\mathop{\rm Spec}(k)} V & = (\mathop{\rm Spec}(k) \times_{U/G} U) \times_{\mathop{\rm Spec}(k)}(\mathop{\rm Spec}(k) \times_{U/G} U) \\ & = \mathop{\rm Spec}(k) \times_{U/G} U \times_{U/G} U \\ & = \mathop{\rm Spec}(k) \times_{U/G} U \times G \\ & = V \times G \end{align*} The action of $G$ on $U$ induces an action of $a : G \times V \to V$. The displayed equality means that $G \times V \to V \times_{\mathop{\rm Spec}(k)} V$, $(g, v) \mapsto (a(g, v), v)$ is an isomorphism. In particular we see that for every $i$ we have an isomorphism $H_i \times \mathop{\rm Spec}(k_i) \to \mathop{\rm Spec}(k_i \otimes_k k_i)$ where $H_i \subset G$ is the subgroup of elements fixing $i \in I$. Thus $H_i$ is finite and is the Galois group of $k_i/k$. We omit the converse construction. $\square$

    The code snippet corresponding to this tag is a part of the file spaces.tex and is located in lines 2324–2335 (see updates for more information).

    \begin{lemma}
    \label{lemma-quotient-field-map}
    Notation and assumptions as in Lemma \ref{lemma-quotient}.
    If $\Spec(k) \to U/G$ is a morphism, then there exist
    \begin{enumerate}
    \item a finite Galois extension $k'/k$,
    \item a finite subgroup $H \subset G$,
    \item an isomorphism $H \to \text{Gal}(k'/k)$, and
    \item an $H$-equivariant morphism $\Spec(k') \to U$.
    \end{enumerate}
    Conversely, such data determine a morphism $\Spec(k) \to U/G$.
    \end{lemma}
    
    \begin{proof}
    Consider the fibre product $V = \Spec(k) \times_{U/G} U$.
    Here is a diagram
    $$
    \xymatrix{
    V \ar[r] \ar[d] & U \ar[d] \\
    \Spec(k) \ar[r] & U/G
    }
    $$
    Then $V$ is a nonempty scheme \'etale over $\Spec(k)$ and hence is a
    disjoint union $V = \coprod_{i \in I} \Spec(k_i)$
    of spectra of fields $k_i$ finite separable over $k$
    (Morphisms, Lemma \ref{morphisms-lemma-etale-over-field}).
    We have
    \begin{align*}
    V \times_{\Spec(k)} V
    & =
    (\Spec(k) \times_{U/G} U) \times_{\Spec(k)}(\Spec(k) \times_{U/G} U) \\
    & = 
    \Spec(k) \times_{U/G} U \times_{U/G} U \\
    & =
    \Spec(k) \times_{U/G} U \times G \\
    & =
    V \times G
    \end{align*}
    The action of $G$ on $U$ induces an action of $a : G \times V \to V$.
    The displayed equality means that
    $G \times V \to V \times_{\Spec(k)} V$, $(g, v) \mapsto (a(g, v), v)$
    is an isomorphism. In particular we see that for every $i$ we have
    an isomorphism $H_i \times \Spec(k_i) \to \Spec(k_i \otimes_k k_i)$
    where $H_i \subset G$ is the subgroup of elements fixing $i \in I$.
    Thus $H_i$ is finite and is the Galois group of $k_i/k$.
    We omit the converse construction.
    \end{proof}

    Comments (0)

    There are no comments yet for this tag.

    There are also 7 comments on Section 56.14: Algebraic Spaces.

    Add a comment on tag 02Z5

    Your email address will not be published. Required fields are marked.

    In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

    All contributions are licensed under the GNU Free Documentation License.




    In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following box. So in case this where tag 0321 you just have to write 0321. Beware of the difference between the letter 'O' and the digit 0.

    This captcha seems more appropriate than the usual illegible gibberish, right?