The Stacks project

Lemma 10.37.17. Let $(R_ i, \varphi _{ii'})$ be a directed system (Categories, Definition 10.8.1) of rings. If each $R_ i$ is a normal ring so is $R = \mathop{\mathrm{colim}}\nolimits _ i R_ i$.

Proof. Let $\mathfrak p \subset R$ be a prime ideal. Set $\mathfrak p_ i = R_ i \cap \mathfrak p$ (usual abuse of notation). Then we see that $R_{\mathfrak p} = \mathop{\mathrm{colim}}\nolimits _ i (R_ i)_{\mathfrak p_ i}$. Since each $(R_ i)_{\mathfrak p_ i}$ is a normal domain we reduce to proving the statement of the lemma for normal domains. If $a, b \in R$ and $a/b$ satisfies a monic polynomial $P(T) \in R[T]$, then we can find a (sufficiently large) $i \in I$ such that $a, b$ come from objects $a_ i, b_ i$ over $R_ i$, $P$ comes from a monic polynomial $P_ i\in R_ i[T]$ and $P_ i(a_ i/b_ i)=0$. Since $R_ i$ is normal we see $a_ i/b_ i \in R_ i$ and hence also $a/b \in R$. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 10.37: Normal rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 037D. Beware of the difference between the letter 'O' and the digit '0'.