## Tag `03EJ`

Chapter 18: Modules on Sites > Section 18.19: Localization of ringed sites

Remark 18.19.7. Localization and presheaves of modules; see Sites, Remark 7.24.10. Let $\mathcal{C}$ be a category. Let $\mathcal{O}$ be a presheaf of rings. Let $U$ be an object of $\mathcal{C}$. Strictly speaking the functors $j_U^*$, $j_{U*}$ and $j_{U!}$ have not been defined for presheaves of $\mathcal{O}$-modules. But of course, we can think of a presheaf as a sheaf for the chaotic topology on $\mathcal{C}$ (see Sites, Examples 7.6.6). Hence we also obtain a functor $$ j_U^* : \textit{PMod}(\mathcal{O}) \longrightarrow \textit{PMod}(\mathcal{O}_U) $$ and functors $$ j_{U*}, j_{U!} : \textit{PMod}(\mathcal{O}_U) \longrightarrow \textit{PMod}(\mathcal{O}) $$ which are right, left adjoint to $j_U^*$. Inspecting the proof of Lemma 18.19.2 we see that $j_{U!}\mathcal{G}$ is the presheaf $$ V \longmapsto \bigoplus\nolimits_{\varphi \in \mathop{\rm Mor}\nolimits_\mathcal{C}(V, U)} \mathcal{G}(V \xrightarrow{\varphi} U) $$ In addition the functor $j_{U!}$ is exact (by Lemma 18.19.3 in the case of the discrete topologies). Moreover, if $\mathcal{C}$ is actually a site, and $\mathcal{O}$ is actually a sheaf of rings, then the diagram $$ \xymatrix{ \textit{Mod}(\mathcal{O}_U) \ar[r]_{j_{U!}} \ar[d]_{forget} & \textit{Mod}(\mathcal{O}) \\ \textit{PMod}(\mathcal{O}_U) \ar[r]^{j_{U!}} & \textit{PMod}(\mathcal{O}) \ar[u]_{(~)^\#} } $$ commutes.

The code snippet corresponding to this tag is a part of the file `sites-modules.tex` and is located in lines 2255–2303 (see updates for more information).

```
\begin{remark}
\label{remark-localize-presheaves}
Localization and presheaves of modules; see
Sites, Remark \ref{sites-remark-localize-presheaves}.
Let $\mathcal{C}$ be a category.
Let $\mathcal{O}$ be a presheaf of rings.
Let $U$ be an object of $\mathcal{C}$.
Strictly speaking the functors $j_U^*$, $j_{U*}$ and $j_{U!}$
have not been defined for presheaves of $\mathcal{O}$-modules.
But of course, we can think of a presheaf as a sheaf for the
chaotic topology on $\mathcal{C}$ (see
Sites, Examples \ref{sites-example-indiscrete}).
Hence we also obtain a functor
$$
j_U^* :
\textit{PMod}(\mathcal{O})
\longrightarrow
\textit{PMod}(\mathcal{O}_U)
$$
and functors
$$
j_{U*}, j_{U!} :
\textit{PMod}(\mathcal{O}_U)
\longrightarrow
\textit{PMod}(\mathcal{O})
$$
which are right, left adjoint to $j_U^*$. Inspecting the proof of
Lemma \ref{lemma-extension-by-zero} we see that $j_{U!}\mathcal{G}$
is the presheaf
$$
V \longmapsto
\bigoplus\nolimits_{\varphi \in \Mor_\mathcal{C}(V, U)}
\mathcal{G}(V \xrightarrow{\varphi} U)
$$
In addition the functor $j_{U!}$ is exact (by
Lemma \ref{lemma-extension-by-zero-exact} in the
case of the discrete topologies). Moreover, if $\mathcal{C}$
is actually a site, and $\mathcal{O}$ is actually a sheaf of rings,
then the diagram
$$
\xymatrix{
\textit{Mod}(\mathcal{O}_U) \ar[r]_{j_{U!}} \ar[d]_{forget} &
\textit{Mod}(\mathcal{O}) \\
\textit{PMod}(\mathcal{O}_U) \ar[r]^{j_{U!}} &
\textit{PMod}(\mathcal{O}) \ar[u]_{(\ )^\#}
}
$$
commutes.
\end{remark}
```

## Comments (0)

## Add a comment on tag `03EJ`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There are also 2 comments on Section 18.19: Modules on Sites.