The Stacks project

Lemma 59.18.6. The complex of abelian presheaves

\begin{align*} \mathbf{Z}_\mathcal {U}^\bullet \quad : \quad \bigoplus _{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus _{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1}} \leftarrow \bigoplus _{i_0, i_1, i_2 \in I} \mathbf{Z}_{U_{i_0} \times _ U U_{i_1} \times _ U U_{i_2}} \leftarrow \ldots \end{align*}

is exact in all degrees except $0$ in $\textit{PAb}(\mathcal{C})$.

Proof. For any $V\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ the complex of abelian groups $\mathbf{Z}_\mathcal {U}^\bullet (V)$ is

\[ \begin{matrix} \mathbf{Z}\left[ \coprod _{i_0\in I} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[ \coprod _{i_0, i_1 \in I} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(V, U_{i_0} \times _ U U_{i_1})\right] \leftarrow \ldots = \\ \bigoplus _{\varphi : V \to U} \left( \mathbf{Z}\left[\coprod _{i_0 \in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[\coprod _{i_0, i_1\in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_0}) \times \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_{i_1})\right] \leftarrow \ldots \right) \end{matrix} \]

where

\[ \mathop{\mathrm{Mor}}\nolimits _{\varphi }(V, U_ i) = \{ V \to U_ i \text{ such that } V \to U_ i \to U \text{ equals } \varphi \} . \]

Set $S_\varphi = \coprod _{i\in I} \mathop{\mathrm{Mor}}\nolimits _\varphi (V, U_ i)$, so that

\[ \mathbf{Z}_\mathcal {U}^\bullet (V) = \bigoplus _{\varphi : V \to U} \left( \mathbf{Z}[S_\varphi ] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi ] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi \times S_\varphi ] \leftarrow \ldots \right). \]

Thus it suffices to show that for each $S = S_\varphi $, the complex

\begin{align*} \mathbf{Z}[S] \leftarrow \mathbf{Z}[S \times S] \leftarrow \mathbf{Z}[S \times S \times S] \leftarrow \ldots \end{align*}

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix $s\in S$ and define $K: n_{(s_0, \ldots , s_ p)} \mapsto n_{(s, s_0, \ldots , s_ p)}.$ One easily checks that $K$ is a nullhomotopy for the operator

\[ \delta : \eta _{(s_0, \ldots , s_ p)} \mapsto \sum \nolimits _{i = 0}^ p (-1)^ p \eta _{(s_0, \ldots , \hat s_ i, \ldots , s_ p)}. \]

See Cohomology on Sites, Lemma 21.9.4 for more details. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03OQ. Beware of the difference between the letter 'O' and the digit '0'.