The Stacks project

Lemma 64.20.6. Suppose we have $K_ n\in D_{perf}(\mathbf{Z}/\ell ^ n\mathbf{Z})$, $\pi _ n : K_ n\to K_ n$ and isomorphisms $\varphi _ n : K_{n+1} \otimes ^\mathbf {L}_{\mathbf{Z}/\ell ^{n+1}\mathbf{Z}} \mathbf{Z}/\ell ^ n\mathbf{Z} \to K_ n$ compatible with $\pi _{n+1}$ and $\pi _ n$. Then

  1. the elements $t_ n = \text{Tr}(\pi _ n |_{K_ n})\in \mathbf{Z}/\ell ^ n\mathbf{Z}$ form an element $t_\infty = \{ t_ n\} $ of $\mathbf{Z}_\ell $,

  2. the $\mathbf{Z}_\ell $-module $H_\infty ^ i = \mathop{\mathrm{lim}}\nolimits _ n H^ i(k_ n)$ is finite and is nonzero for finitely many $i$ only, and

  3. the operators $H^ i(\pi _ n): H^ i(K_ n)\to H^ i(K_ n)$ are compatible and define $\pi _\infty ^ i : H_\infty ^ i\to H_\infty ^ i$ satisfying

    \[ \sum (-1)^ i \text{Tr}( \pi _\infty ^ i |_{H_\infty ^ i \otimes _{\mathbf{Z}_\ell }\mathbf{Q}_\ell }) = t_\infty . \]

Proof. Since $\mathbf{Z}/\ell ^ n\mathbf{Z}$ is a local ring and $K_ n$ is perfect, each $K_ n$ can be represented by a finite complex $K_ n^\bullet $ of finite free $\mathbf{Z}/\ell ^ n \mathbf{Z}$-modules such that the map $K_ n^ p \to K_ n^{p+1}$ has image contained in $\ell K_ n^{p+1}$. It is a fact that such a complex is unique up to isomorphism. Moreover $\pi _ n$ can be represented by a morphism of complexes $\pi _ n^\bullet : K_ n^\bullet \to K_ n^\bullet $ (which is unique up to homotopy). By the same token the isomorphism $\varphi _ n : K_{n+1} \otimes _{\mathbf{Z}/\ell ^{n+1}\mathbf{Z}}^{\mathbf{L}} \mathbf{Z}/\ell ^ n\mathbf{Z}\to K_ n$ is represented by a map of complexes

\[ \varphi _ n^\bullet : K_{n+1}^\bullet \otimes _{\mathbf{Z}/\ell ^{n+1}\mathbf{Z}} \mathbf{Z}/\ell ^ n\mathbf{Z} \to K_ n^\bullet . \]

In fact, $\varphi _ n^\bullet $ is an isomorphism of complexes, thus we see that

  • there exist $a, b\in \mathbf{Z}$ independent of $n$ such that $K_ n^ i = 0$ for all $i\notin [a, b]$, and

  • the rank of $K_ n^ i$ is independent of $n$.

Therefore, the module $K_\infty ^ i = \mathop{\mathrm{lim}}\nolimits _ n \{ K_ n^ i, \varphi _ n^ i\} $ is a finite free $\mathbf{Z}_\ell $-module and $K_\infty ^\bullet $ is a finite complex of finite free $\mathbf{Z}_\ell $-modules. By induction on the number of nonzero terms, one can prove that $H^ i\left(K_\infty ^\bullet \right) = \mathop{\mathrm{lim}}\nolimits _ n H^ i\left(K_ n^\bullet \right)$ (this is not true for unbounded complexes). We conclude that $H_\infty ^ i = H^ i\left(K_\infty ^\bullet \right)$ is a finite $\mathbf{Z}_\ell $-module. This proves ii. To prove the remainder of the lemma, we need to overcome the possible noncommutativity of the diagrams

\[ \xymatrix{ {K_{n+1}^\bullet } \ar[d]_{\pi _{n+1}^\bullet } \ar[r]^{\varphi _ n^\bullet } & {K_ n^\bullet } \ar[d]^{\pi _ n^\bullet } \\ {K_{n+1}^\bullet } \ar[r]_{\varphi _ n^\bullet } & {K_ n^\bullet .} } \]

However, this diagram does commute in the derived category, hence it commutes up to homotopy. We inductively replace $\pi _ n^\bullet $ for $n\geq 2$ by homotopic maps of complexes making these diagrams commute. Namely, if $h^ i : K_{n+1}^ i \to K_ n^{i-1}$ is a homotopy, i.e.,

\[ \pi _ n^\bullet \circ \varphi _ n^\bullet - \varphi _ n^\bullet \circ \pi _{n + 1}^\bullet = dh + hd, \]

then we choose $\tilde h^ i : K_{n+1}^ i\to K_{n+1}^{i-1}$ lifting $h^ i$. This is possible because $K_{n+1}^ i$ free and $K_{n+1}^{i-1}\to K_ n^{i-1}$ is surjective. Then replace $\pi _ n^\bullet $ by $\tilde\pi _ n^\bullet $ defined by

\[ \tilde\pi _{n+1}^\bullet = \pi _{n+1}^\bullet + d\tilde h+\tilde hd. \]

With this choice of $\{ \pi _ n^\bullet \} $, the above diagrams commute, and the maps fit together to define an endomorphism $\pi _\infty ^\bullet = \mathop{\mathrm{lim}}\nolimits _ n\pi _ n^\bullet $ of $K_\infty ^\bullet $. Then part i is clear: the elements $t_ n = \sum (-1)^ i \text{Tr}\left(\pi _ n^ i |_{K_ n^ i}\right)$ fit into an element $t_\infty $ of $\mathbf{Z}_\ell $. Moreover

\begin{align*} t_\infty & = \sum (-1)^ i \text{Tr}_{\mathbf{Z}_\ell }(\pi _\infty ^ i |_{K_\infty ^ i}) \\ & = \sum (-1)^ i \text{Tr}_{\mathbf{Q}_\ell }( \pi _\infty ^ i |_{K_\infty ^ i \otimes _{\mathbf{Z}_\ell }\mathbf{Q}_\ell }) \\ & = \sum (-1)^ i \text{Tr}( \pi _\infty |_{H^ i(K_\infty ^\bullet \otimes \mathbf{Q}_\ell )}) \end{align*}

where the last equality follows from the fact that $\mathbf{Q}_\ell $ is a field, so the complex $K_\infty ^\bullet \otimes \mathbf{Q}_\ell $ is quasi-isomorphic to its cohomology $H^ i(K_\infty ^\bullet \otimes \mathbf{Q}_\ell )$. The latter is also equal to $H^ i(K_\infty ^\bullet )\otimes _{\mathbf{Z}}\mathbf{Q}_\ell = H_\infty ^ i \otimes \mathbf{Q}_\ell $, which finishes the proof of the lemma, and also that of Theorem 64.20.5. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 64.20: Cohomological interpretation

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03V4. Beware of the difference between the letter 'O' and the digit '0'.