The Stacks project

Lemma 37.22.6. Let $f : X \to Y$ be a morphism of schemes. Assume that all the fibres $X_ y$ are locally Noetherian schemes. Let $Y' \to Y$ be locally of finite type. Let $f' : X' \to Y'$ be the base change of $f$. Let $x' \in X'$ be a point with image $x \in X$.

  1. If $f$ is Cohen-Macaulay at $x$, then $f' : X' \to Y'$ is Cohen-Macaulay at $x'$.

  2. If $f$ is flat at $x$ and $f'$ is Cohen-Macaulay at $x'$, then $f$ is Cohen-Macaulay at $x$.

  3. If $Y' \to Y$ is flat at $f'(x')$ and $f'$ is Cohen-Macaulay at $x'$, then $f$ is Cohen-Macaulay at $x$.

Proof. Note that the assumption on $Y' \to Y$ implies that for $y' \in Y'$ mapping to $y \in Y$ the field extension $\kappa (y')/\kappa (y)$ is finitely generated. Hence also all the fibres $X'_{y'} = (X_ y)_{\kappa (y')}$ are locally Noetherian, see Varieties, Lemma 33.11.1. Thus the lemma makes sense. Set $y' = f'(x')$ and $y = f(x)$. Hence we get the following commutative diagram of local rings

\[ \xymatrix{ \mathcal{O}_{X', x'} & \mathcal{O}_{X, x} \ar[l] \\ \mathcal{O}_{Y', y'} \ar[u] & \mathcal{O}_{Y, y} \ar[l] \ar[u] } \]

where the upper left corner is a localization of the tensor product of the upper right and lower left corners over the lower right corner.

Assume $f$ is Cohen-Macaulay at $x$. The flatness of $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$ implies the flatness of $\mathcal{O}_{Y', y'} \to \mathcal{O}_{X', x'}$, see Algebra, Lemma 10.100.1. The fact that $\mathcal{O}_{X, x}/\mathfrak m_ y\mathcal{O}_{X, x}$ is Cohen-Macaulay implies that $\mathcal{O}_{X', x'}/\mathfrak m_{y'}\mathcal{O}_{X', x'}$ is Cohen-Macaulay, see Varieties, Lemma 33.13.1. Hence we see that $f'$ is Cohen-Macaulay at $x'$.

Assume $f$ is flat at $x$ and $f'$ is Cohen-Macaulay at $x'$. The fact that $\mathcal{O}_{X', x'}/\mathfrak m_{y'}\mathcal{O}_{X', x'}$ is Cohen-Macaulay implies that $\mathcal{O}_{X, x}/\mathfrak m_ y\mathcal{O}_{X, x}$ is Cohen-Macaulay, see Varieties, Lemma 33.13.1. Hence we see that $f$ is Cohen-Macaulay at $x$.

Assume $Y' \to Y$ is flat at $y'$ and $f'$ is Cohen-Macaulay at $x'$. The flatness of $\mathcal{O}_{Y', y'} \to \mathcal{O}_{X', x'}$ and $\mathcal{O}_{Y, y} \to \mathcal{O}_{Y', y'}$ implies the flatness of $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$, see Algebra, Lemma 10.100.1. The fact that $\mathcal{O}_{X', x'}/\mathfrak m_{y'}\mathcal{O}_{X', x'}$ is Cohen-Macaulay implies that $\mathcal{O}_{X, x}/\mathfrak m_ y\mathcal{O}_{X, x}$ is Cohen-Macaulay, see Varieties, Lemma 33.13.1. Hence we see that $f$ is Cohen-Macaulay at $x$. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 37.22: Cohen-Macaulay morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 045T. Beware of the difference between the letter 'O' and the digit '0'.