# The Stacks Project

## Tag 0462

Lemma 58.23.6. Let $S$ be a scheme. Let $f : X \to Y$, $g : Y \to Z$ be morphisms of algebraic spaces over $S$. If $g \circ f : X \to Z$ is locally of finite type, then $f : X \to Y$ is locally of finite type.

Proof. We can find a diagram $$\xymatrix{ U \ar[r] \ar[d] & V \ar[r] \ar[d] & W \ar[d] \\ X \ar[r] & Y \ar[r] & Z }$$ where $U$, $V$, $W$ are schemes, the vertical arrows are étale and surjective, see Spaces, Lemma 56.11.6. At this point we can use Lemma 58.23.4 and Morphisms, Lemma 28.14.8 to conclude. $\square$

The code snippet corresponding to this tag is a part of the file spaces-morphisms.tex and is located in lines 4463–4469 (see updates for more information).

\begin{lemma}
\label{lemma-permanence-finite-type}
Let $S$ be a scheme.
Let $f : X \to Y$, $g : Y \to Z$ be morphisms of algebraic spaces over $S$.
If $g \circ f : X \to Z$ is locally of finite type, then $f : X \to Y$
is locally of finite type.
\end{lemma}

\begin{proof}
We can find a diagram
$$\xymatrix{ U \ar[r] \ar[d] & V \ar[r] \ar[d] & W \ar[d] \\ X \ar[r] & Y \ar[r] & Z }$$
where $U$, $V$, $W$ are schemes, the vertical arrows are \'etale and surjective,
see
Spaces, Lemma \ref{spaces-lemma-lift-morphism-presentations}.
At this point we can use
Lemma \ref{lemma-finite-type-local}
and
Morphisms, Lemma \ref{morphisms-lemma-permanence-finite-type}
to conclude.
\end{proof}

There are no comments yet for this tag.

## Add a comment on tag 0462

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).