## Tag `052K`

Chapter 10: Commutative Algebra > Section 10.49: Valuation rings

Lemma 10.49.4. Let $A \subset K$ be a subring of a field $K$ such that for all $x \in K$ either $x \in A$ or $x^{-1} \in A$ or both. Then $A$ is a valuation ring with fraction field $K$.

Proof.If $A$ is not $K$, then $A$ is not a field and there is a nonzero maximal ideal $\mathfrak m$. If $\mathfrak m'$ is a second maximal ideal, then choose $x, y \in A$ with $x \in \mathfrak m$, $y \not \in \mathfrak m$, $x \not \in \mathfrak m'$, and $y \in \mathfrak m'$ (see Lemma 10.14.2). Then neither $x/y \in A$ nor $y/x \in A$ contradicting the assumption of the lemma. Thus we see that $A$ is a local ring. Suppose that $A'$ is a local ring contained in $K$ which dominates $A$. Let $x \in A'$. We have to show that $x \in A$. If not, then $x^{-1} \in A$, and of course $x^{-1} \in \mathfrak m_A$. But then $x^{-1} \in \mathfrak m_{A'}$ which contradicts $x \in A'$. $\square$

The code snippet corresponding to this tag is a part of the file `algebra.tex` and is located in lines 11190–11195 (see updates for more information).

```
\begin{lemma}
\label{lemma-x-or-x-inverse-valuation-ring}
Let $A \subset K$ be a subring of a field $K$ such that for all
$x \in K$ either $x \in A$ or $x^{-1} \in A$ or both.
Then $A$ is a valuation ring with fraction field $K$.
\end{lemma}
\begin{proof}
If $A$ is not $K$, then $A$ is not a field and there is a nonzero
maximal ideal $\mathfrak m$.
If $\mathfrak m'$ is a second maximal ideal, then choose $x, y \in A$
with $x \in \mathfrak m$, $y \not \in \mathfrak m$,
$x \not \in \mathfrak m'$, and $y \in \mathfrak m'$ (see
Lemma \ref{lemma-silly}). Then neither $x/y \in A$ nor $y/x \in A$
contradicting the assumption of the lemma. Thus we see that $A$ is
a local ring. Suppose that $A'$ is a local ring contained in $K$ which
dominates $A$. Let $x \in A'$. We have to show that $x \in A$. If not, then
$x^{-1} \in A$, and of course $x^{-1} \in \mathfrak m_A$. But then
$x^{-1} \in \mathfrak m_{A'}$ which contradicts $x \in A'$.
\end{proof}
```

## Comments (0)

## Add a comment on tag `052K`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.