The Stacks project

10.79 Open loci defined by module maps

The set of primes where a given module map is surjective, or an isomorphism is sometimes open. In the case of finite projective modules we can look at the rank of the map.

Lemma 10.79.1. Let $R$ be a ring. Let $\varphi : M \to N$ be a map of $R$-modules with $N$ a finite $R$-module. Then we have the equality

\begin{align*} U & = \{ \mathfrak p \subset R \mid \varphi _{\mathfrak p} : M_{\mathfrak p} \to N_{\mathfrak p} \text{ is surjective}\} \\ & = \{ \mathfrak p \subset R \mid \varphi \otimes \kappa (\mathfrak p) : M \otimes \kappa (\mathfrak p) \to N \otimes \kappa (\mathfrak p) \text{ is surjective}\} \end{align*}

and $U$ is an open subset of $\mathop{\mathrm{Spec}}(R)$. Moreover, for any $f \in R$ such that $D(f) \subset U$ the map $M_ f \to N_ f$ is surjective.

Proof. The equality in the displayed formula follows from Nakayama's lemma. Nakayama's lemma also implies that $U$ is open. See Lemma 10.20.1 especially part (3). If $D(f) \subset U$, then $M_ f \to N_ f$ is surjective on all localizations at primes of $R_ f$, and hence it is surjective by Lemma 10.23.1. $\square$

Lemma 10.79.2. Let $R$ be a ring. Let $\varphi : M \to N$ be a map of $R$-modules with $M$ finite and $N$ finitely presented. Then

\[ U = \{ \mathfrak p \subset R \mid \varphi _{\mathfrak p} : M_{\mathfrak p} \to N_{\mathfrak p} \text{ is an isomorphism}\} \]

is an open subset of $\mathop{\mathrm{Spec}}(R)$.

Proof. Let $\mathfrak p \in U$. Pick a presentation $N = R^{\oplus n}/\sum _{j = 1, \ldots , m} R k_ j$. Denote $e_ i$ the image in $N$ of the $i$th basis vector of $R^{\oplus n}$. For each $i \in \{ 1, \ldots , n\} $ choose an element $m_ i \in M_{\mathfrak p}$ such that $\varphi (m_ i) = f_ i e_ i$ for some $f_ i \in R$, $f_ i \not\in \mathfrak p$. This is possible as $\varphi _{\mathfrak p}$ is an isomorphism. Set $f = f_1 \ldots f_ n$ and let $\psi : R_ f^{\oplus n} \to M_ f$ be the map which maps the $i$th basis vector to $m_ i/f_ i$. Note that $\varphi _ f \circ \psi $ is the localization at $f$ of the given map $R^{\oplus n} \to N$. As $\varphi _{\mathfrak p}$ is an isomorphism we see that $\psi (k_ j)$ is an element of $M$ which maps to zero in $M_{\mathfrak p}$. Hence we see that there exist $g_ j \in R$, $g_ j \not\in \mathfrak p$ such that $g_ j \psi (k_ j) = 0$. Setting $g = g_1 \ldots g_ m$, we see that $\psi _ g$ factors through $N_{fg}$ to give a map $\chi : N_{fg} \to M_{fg}$. By construction $\chi $ is a right inverse to $\varphi _{fg}$. It follows that $\chi _\mathfrak p$ is an isomorphism. By Lemma 10.79.1 there is an $h \in R$, $h \not\in \mathfrak p$ such that $\chi _ h : N_{fgh} \to M_{fgh}$ is surjective. Hence $\varphi _{fgh}$ and $\chi _ h$ are mutually inverse maps, which implies that $D(fgh) \subset U$ as desired. $\square$

Lemma 10.79.3. Let $R$ be a ring. Let $\mathfrak p \subset R$ be a prime. Let $M$ be a finitely presented $R$-module. If $M_\mathfrak p$ is free, then there is an $f \in R$, $f \not\in \mathfrak p$ such that $M_ f$ is a free $R_ f$-module.

Proof. Choose a basis $x_1, \ldots , x_ n \in M_\mathfrak p$. We can choose an $f \in R$, $f \not\in \mathfrak p$ such that $x_ i$ is the image of some $y_ i \in M_ f$. After replacing $y_ i$ by $f^ m y_ i$ for $m \gg 0$ we may assume $y_ i \in M$. Namely, this replaces $x_1, \ldots , x_ n$ by $f^ mx_1, \ldots , f^ mx_ n$ which is still a basis as $f$ maps to a unit in $R_\mathfrak p$. Hence we obtain a homomorphism $\varphi = (y_1, \ldots , y_ n) : R^{\oplus n} \to M$ of $R$-modules whose localization at $\mathfrak p$ is an isomorphism. By Lemma 10.79.2 we can find an $f \in R$, $f \not\in \mathfrak p$ such that $\varphi _\mathfrak q$ is an isomorphism for all primes $\mathfrak q \subset R$ with $f \not\in \mathfrak q$. Then it follows from Lemma 10.23.1 that $\varphi _ f$ is an isomorphism and the proof is complete. $\square$

Lemma 10.79.4. Let $R$ be a ring. Let $\varphi : P_1 \to P_2$ be a map of finite projective modules. Then

  1. The set $U$ of primes $\mathfrak p \in \mathop{\mathrm{Spec}}(R)$ such that $\varphi \otimes \kappa (\mathfrak p)$ is injective is open and for any $f\in R$ such that $D(f) \subset U$ we have

    1. $P_{1, f} \to P_{2, f}$ is injective, and

    2. the module $\mathop{\mathrm{Coker}}(\varphi )_ f$ is finite projective over $R_ f$.

  2. The set $W$ of primes $\mathfrak p \in \mathop{\mathrm{Spec}}(R)$ such that $\varphi \otimes \kappa (\mathfrak p)$ is surjective is open and for any $f\in R$ such that $D(f) \subset W$ we have

    1. $P_{1, f} \to P_{2, f}$ is surjective, and

    2. the module $\mathop{\mathrm{Ker}}(\varphi )_ f$ is finite projective over $R_ f$.

  3. The set $V$ of primes $\mathfrak p \in \mathop{\mathrm{Spec}}(R)$ such that $\varphi \otimes \kappa (\mathfrak p)$ is an isomorphism is open and for any $f\in R$ such that $D(f) \subset V$ the map $\varphi : P_{1, f} \to P_{2, f}$ is an isomorphism of modules over $R_ f$.

Proof. To prove the set $U$ is open we may work locally on $\mathop{\mathrm{Spec}}(R)$. Thus we may replace $R$ by a suitable localization and assume that $P_1 = R^{n_1}$ and $P_2 = R^{n_2}$, see Lemma 10.78.2. In this case injectivity of $\varphi \otimes \kappa (\mathfrak p)$ is equivalent to $n_1 \leq n_2$ and some $n_1 \times n_1$ minor $f$ of the matrix of $\varphi $ being invertible in $\kappa (\mathfrak p)$. Thus $D(f) \subset U$. This argument also shows that $P_{1, \mathfrak p} \to P_{2, \mathfrak p}$ is injective for $\mathfrak p \in U$.

Now suppose $D(f) \subset U$. By the remark in the previous paragraph and Lemma 10.23.1 we see that $P_{1, f} \to P_{2, f}$ is injective, i.e., (1)(a) holds. By Lemma 10.78.2 to prove (1)(b) it suffices to prove that $\mathop{\mathrm{Coker}}(\varphi )$ is finite projective locally on $D(f)$. Thus, as we saw above, we may assume that $P_1 = R^{n_1}$ and $P_2 = R^{n_2}$ and that some minor of the matrix of $\varphi $ is invertible in $R$. If the minor in question corresponds to the first $n_1$ basis vectors of $R^{n_2}$, then using the last $n_2 - n_1$ basis vectors we get a map $R^{n_2 - n_1} \to R^{n_2} \to \mathop{\mathrm{Coker}}(\varphi )$ which is easily seen to be an isomorphism.

Openness of $W$ and (2)(a) for $D(f) \subset W$ follow from Lemma 10.79.1. Since $P_{2, f}$ is projective over $R_ f$ we see that $\varphi _ f : P_{1, f} \to P_{2, f}$ has a section and it follows that $\mathop{\mathrm{Ker}}(\varphi )_ f$ is a direct summand of $P_{2, f}$. Therefore $\mathop{\mathrm{Ker}}(\varphi )_ f$ is finite projective. Thus (2)(b) holds as well.

It is clear that $V = U \cap W$ is open and the other statement in (3) follows from (1)(a) and (2)(a). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05GD. Beware of the difference between the letter 'O' and the digit '0'.