The Stacks project

Lemma 12.19.15. Let $\mathcal{A}$ be an abelian category. Let $A \to B \to C$ be a complex of filtered objects of $\mathcal{A}$. Assume $A, B, C$ have finite filtrations and that $\text{gr}(A) \to \text{gr}(B) \to \text{gr}(C)$ is exact. Then

  1. for each $p \in \mathbf{Z}$ the sequence $\text{gr}^ p(A) \to \text{gr}^ p(B) \to \text{gr}^ p(C)$ is exact,

  2. for each $p \in \mathbf{Z}$ the sequence $F^ p(A) \to F^ p(B) \to F^ p(C)$ is exact,

  3. for each $p \in \mathbf{Z}$ the sequence $A/F^ p(A) \to B/F^ p(B) \to C/F^ p(C)$ is exact,

  4. the maps $A \to B$ and $B \to C$ are strict, and

  5. $A \to B \to C$ is exact (as a sequence in $\mathcal{A}$).

Proof. Part (1) is immediate from the definitions. We will prove (3) by induction on the length of the filtrations. If each of $A$, $B$, $C$ has only one nonzero graded part, then (3) holds as $\text{gr}(A) = A$, etc. Let $n$ be the largest integer such that at least one of $F^ nA, F^ nB, F^ nC$ is nonzero. Set $A' = A/F^ nA$, $B' = B/F^ nB$, $C' = C/F^ nC$ with induced filtrations. Note that $\text{gr}(A) = F^ nA \oplus \text{gr}(A')$ and similarly for $B$ and $C$. The induction hypothesis applies to $A' \to B' \to C'$, which implies that $A/F^ p(A) \to B/F^ p(B) \to C/F^ p(C)$ is exact for $p \geq n$. To conclude the same for $p = n + 1$, i.e., to prove that $A \to B \to C$ is exact we use the commutative diagram

\[ \xymatrix{ 0 \ar[r] & F^ nA \ar[r] \ar[d] & A \ar[r] \ar[d] & A' \ar[r] \ar[d] & 0 \\ 0 \ar[r] & F^ nB \ar[r] \ar[d] & B \ar[r] \ar[d] & B' \ar[r] \ar[d] & 0 \\ 0 \ar[r] & F^ nC \ar[r] & C \ar[r] & C' \ar[r] & 0 } \]

whose rows are short exact sequences of objects of $\mathcal{A}$. The proof of (2) is dual. Of course (5) follows from (2).

To prove (4) denote $f : A \to B$ and $g : B \to C$ the given morphisms. We know that $f(F^ p(A)) = \mathop{\mathrm{Ker}}(F^ p(B) \to F^ p(C))$ by (2) and $f(A) = \mathop{\mathrm{Ker}}(g)$ by (5). Hence $f(F^ p(A)) = \mathop{\mathrm{Ker}}(F^ p(B) \to F^ p(C)) = \mathop{\mathrm{Ker}}(g) \cap F^ p(B) = f(A) \cap F^ p(B)$ which proves that $f$ is strict. The proof that $g$ is strict is dual to this. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 12.19: Filtrations

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05QH. Beware of the difference between the letter 'O' and the digit '0'.