The Stacks project

Lemma 13.14.16. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be triangulated categories. Let $S$, resp. $S'$ be a saturated multiplicative system in $\mathcal{A}$, resp. $\mathcal{B}$ compatible with the triangulated structure. Let $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{C}$ be exact functors. Denote $F' : \mathcal{A} \to (S')^{-1}\mathcal{B}$ the composition of $F$ with the localization functor.

  1. If $RF'$, $RG$, $R(G \circ F)$ are everywhere defined, then there is a canonical transformation of functors $t : R(G \circ F) \longrightarrow RG \circ RF'$.

  2. If $LF'$, $LG$, $L(G \circ F)$ are everywhere defined, then there is a canonical transformation of functors $t : LG \circ LF' \to L(G \circ F)$.

Proof. In this proof we try to be careful. Hence let us think of the derived functors as the functors

\[ RF' : S^{-1}\mathcal{A} \to (S')^{-1}\mathcal{B}, \quad R(G \circ F) : S^{-1}\mathcal{A} \to \mathcal{C}, \quad RG : (S')^{-1}\mathcal{B} \to \mathcal{C}. \]

Let us denote $Q_ A : \mathcal{A} \to S^{-1}\mathcal{A}$ and $Q_ B : \mathcal{B} \to (S')^{-1}\mathcal{B}$ the localization functors. Then $F' = Q_ B \circ F$. Note that for every object $Y$ of $\mathcal{B}$ there is a canonical map

\[ G(Y) \longrightarrow RG(Q_ B(Y)) \]

in other words, there is a transformation of functors $t' : G \to RG \circ Q_ B$. Let $X$ be an object of $\mathcal{A}$. We have

\begin{align*} R(G \circ F)(Q_ A(X)) & = \mathop{\mathrm{colim}}\nolimits _{s : X \to X' \in S} G(F(X')) \\ & \xrightarrow {t'} \mathop{\mathrm{colim}}\nolimits _{s : X \to X' \in S} RG(Q_ B(F(X'))) \\ & = \mathop{\mathrm{colim}}\nolimits _{s : X \to X' \in S} RG(F'(X')) \\ & = RG(\mathop{\mathrm{colim}}\nolimits _{s : X \to X' \in S} F'(X')) \\ & = RG(RF'(X)). \end{align*}

The system $F'(X')$ is essentially constant in the category $(S')^{-1}\mathcal{B}$. Hence we may pull the colimit inside the functor $RG$ in the third equality of the diagram above, see Categories, Lemma 4.22.8 and its proof. We omit the proof this defines a transformation of functors. The case of left derived functors is similar. $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 13.14: Derived functors in general

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05T2. Beware of the difference between the letter 'O' and the digit '0'.