The Stacks project

Lemma 13.26.11. Let $\mathcal{A}$ be an abelian category. Let $I^\bullet \in K(\text{Fil}^ f(\mathcal{A}))$ be a bounded below complex consisting of filtered injective objects.

  1. Let $\alpha : K^\bullet \to L^\bullet $ in $K(\text{Fil}^ f(\mathcal{A}))$ be a filtered quasi-isomorphism. Then the map

    \[ \mathop{\mathrm{Hom}}\nolimits _{K(\text{Fil}^ f(\mathcal{A}))}(L^\bullet , I^\bullet ) \to \mathop{\mathrm{Hom}}\nolimits _{K(\text{Fil}^ f(\mathcal{A}))}(K^\bullet , I^\bullet ) \]

    is bijective.

  2. Let $L^\bullet \in K(\text{Fil}^ f(\mathcal{A}))$. Then

    \[ \mathop{\mathrm{Hom}}\nolimits _{K(\text{Fil}^ f(\mathcal{A}))}(L^\bullet , I^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{DF(\mathcal{A})}(L^\bullet , I^\bullet ). \]

Proof. Proof of (1). Note that

\[ (K^\bullet , L^\bullet , C(\alpha )^\bullet , \alpha , i, -p) \]

is a distinguished triangle in $K(\text{Fil}^ f(\mathcal{A}))$ (Lemma 13.9.14) and $C(\alpha )^\bullet $ is a filtered acyclic complex (Lemma 13.13.4). Then

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits _{K(\text{Fil}^ f(\mathcal{A}))}(C(\alpha )^\bullet , I^\bullet ) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _{K(\text{Fil}^ f(\mathcal{A}))}(L^\bullet , I^\bullet ) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _{K(\text{Fil}^ f(\mathcal{A}))}(K^\bullet , I^\bullet ) \ar[lld] \\ \mathop{\mathrm{Hom}}\nolimits _{K(\text{Fil}^ f(\mathcal{A}))}(C(\alpha )^\bullet [-1], I^\bullet ) } \]

is an exact sequence of abelian groups, see Lemma 13.4.2. At this point Lemma 13.26.10 guarantees that the outer two groups are zero and hence $\mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(L^\bullet , I^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{A})}(K^\bullet , I^\bullet )$.

Proof of (2). Let $a$ be an element of the right hand side. We may represent $a = \gamma \alpha ^{-1}$ where $\alpha : K^\bullet \to L^\bullet $ is a filtered quasi-isomorphism and $\gamma : K^\bullet \to I^\bullet $ is a map of complexes. By part (1) we can find a morphism $\beta : L^\bullet \to I^\bullet $ such that $\beta \circ \alpha $ is homotopic to $\gamma $. This proves that the map is surjective. Let $b$ be an element of the left hand side which maps to zero in the right hand side. Then $b$ is the homotopy class of a morphism $\beta : L^\bullet \to I^\bullet $ such that there exists a filtered quasi-isomorphism $\alpha : K^\bullet \to L^\bullet $ with $\beta \circ \alpha $ homotopic to zero. Then part (1) shows that $\beta $ is homotopic to zero also, i.e., $b = 0$. $\square$


Comments (2)

Comment #3769 by Owen B on

typo: should be . additionally, in the statement of the lemma, I believe we can take .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05TY. Beware of the difference between the letter 'O' and the digit '0'.