The Stacks project

67.31 Flat modules

In this section we define what it means for a module to be flat at a point. To do this we will use the notion of the stalk of a sheaf on the small étale site $X_{\acute{e}tale}$ of an algebraic space, see Properties of Spaces, Definition 66.19.6.

Lemma 67.31.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $x \in |X|$. The following are equivalent

  1. for some commutative diagram

    \[ \xymatrix{ U \ar[d]_ a \ar[r]_ h & V \ar[d]^ b \\ X \ar[r]^ f & Y } \]

    where $U$ and $V$ are schemes, $a, b$ are étale, and $u \in U$ mapping to $x$ the module $a^*\mathcal{F}$ is flat at $u$ over $V$,

  2. the stalk $\mathcal{F}_{\overline{x}}$ is flat over the étale local ring $\mathcal{O}_{Y, \overline{y}}$ where $\overline{x}$ is any geometric point lying over $x$ and $\overline{y} = f \circ \overline{x}$.

Proof. During this proof we fix a geometric proof $\overline{x} : \mathop{\mathrm{Spec}}(k) \to X$ over $x$ and we denote $\overline{y} = f \circ \overline{x}$ its image in $Y$. Given a diagram as in (1) we can find a geometric point $\overline{u} : \mathop{\mathrm{Spec}}(k) \to U$ lying over $u$ with $\overline{x} = a \circ \overline{u}$, see Properties of Spaces, Lemma 66.19.4. Set $\overline{v} = h \circ \overline{u}$ with image $v \in V$. We know that

\[ \mathcal{O}_{X, \overline{x}} = \mathcal{O}_{U, u}^{sh} \quad \text{and}\quad \mathcal{O}_{Y, \overline{y}} = \mathcal{O}_{V, v}^{sh} \]

see Properties of Spaces, Lemma 66.22.1. We obtain a commutative diagram

\[ \xymatrix{ \mathcal{O}_{U, u} \ar[r] & \mathcal{O}_{X, \overline{x}} \\ \mathcal{O}_{V, v} \ar[u] \ar[r] & \mathcal{O}_{Y, \overline{y}} \ar[u] } \]

of local rings. Finally, we have

\[ \mathcal{F}_{\overline{x}} = (\varphi ^*\mathcal{F})_ u \otimes _{\mathcal{O}_{U, u}} \mathcal{O}_{X, \overline{x}} \]

by Properties of Spaces, Lemma 66.29.4. Thus Algebra, Lemma 10.39.9 tells us $(\varphi ^*\mathcal{F})_ u$ is flat over $\mathcal{O}_{V, v}$ if and only if $\mathcal{F}_{\overline{x}}$ is flat over $\mathcal{O}_{V, v}$. Hence the result follows from More on Flatness, Lemma 38.2.5. $\square$

Definition 67.31.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.

  1. Let $x \in |X|$. We say $\mathcal{F}$ is flat at $x$ over $Y$ if the equivalent conditions of Lemma 67.31.1 hold.

  2. We say $\mathcal{F}$ is flat over $Y$ if $\mathcal{F}$ is flat over $Y$ at all $x \in |X|$.

Having defined this we have the obligatory base change lemma. This lemma implies that formation of the flat locus of a quasi-coherent sheaf commutes with flat base change.

Lemma 67.31.3. Let $S$ be a scheme. Let

\[ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

be a cartesian diagram of algebraic spaces over $S$. Let $x' \in |X'|$ with image $x \in |X|$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$ and denote $\mathcal{F}' = (g')^*\mathcal{F}$.

  1. If $\mathcal{F}$ is flat at $x$ over $Y$ then $\mathcal{F}'$ is flat at $x'$ over $Y'$.

  2. If $g$ is flat at $f'(x')$ and $\mathcal{F}'$ is flat at $x'$ over $Y'$, then $\mathcal{F}$ is flat at $x$ over $Y$.

In particular, if $\mathcal{F}$ is flat over $Y$, then $\mathcal{F}'$ is flat over $Y'$.

Proof. Choose a scheme $V$ and a surjective étale morphism $V \to Y$. Choose a scheme $U$ and a surjective étale morphism $U \to V \times _ Y X$. Choose a scheme $V'$ and a surjective étale morphism $V' \to V \times _ Y Y'$. Then $U' = V' \times _ V U$ is a scheme endowed with a surjective étale morphism $U' = V' \times _ V U \to Y' \times _ Y X = X'$. Pick $u' \in U'$ mapping to $x' \in |X'|$. Then we can check flatness of $\mathcal{F}'$ at $x'$ over $Y'$ in terms of flatness of $\mathcal{F}'|_{U'}$ at $u'$ over $V'$. Hence the lemma follows from More on Morphisms, Lemma 37.15.2. $\square$

The following lemma discusses “composition” of flat morphisms in terms of modules. It also shows that flatness satisfies a kind of top down descent.

Lemma 67.31.4. Let $S$ be a scheme. Let $X \to Y \to Z$ be morphisms of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Let $x \in |X|$ with image $y \in |Y|$.

  1. If $\mathcal{F}$ is flat at $x$ over $Y$ and $Y$ is flat at $y$ over $Z$, then $\mathcal{F}$ is flat at $x$ over $Z$.

  2. Let $x : \mathop{\mathrm{Spec}}(K) \to X$ be a representative of $x$. If

    1. $\mathcal{F}$ is flat at $x$ over $Y$,

    2. $x^*\mathcal{F} \not= 0$, and

    3. $\mathcal{F}$ is flat at $x$ over $Z$,

    then $Y$ is flat at $y$ over $Z$.

  3. Let $\overline{x}$ be a geometric point of $X$ lying over $x$ with image $\overline{y}$ in $Y$. If $\mathcal{F}_{\overline{x}}$ is a faithfully flat $\mathcal{O}_{Y, \overline{y}}$-module and $\mathcal{F}$ is flat at $x$ over $Z$, then $Y$ is flat at $y$ over $Z$.

Proof. Pick $\overline{x}$ and $\overline{y}$ as in part (3) and denote $\overline{z}$ the induced geometric point of $Z$. Via the characterization of flatness in Lemmas 67.31.1 and 67.30.8 the lemma reduces to a purely algebraic question on the local ring map $\mathcal{O}_{Z, \overline{z}} \to \mathcal{O}_{Y, \overline{y}}$ and the module $\mathcal{F}_{\overline{x}}$. Part (1) follows from Algebra, Lemma 10.39.4. We remark that condition (2)(b) guarantees that $\mathcal{F}_{\overline{x}}/ \mathfrak m_{\overline{y}} \mathcal{F}_{\overline{x}}$ is nonzero. Hence (2)(a) $+$ (2)(b) imply that $\mathcal{F}_{\overline{x}}$ is a faithfully flat $\mathcal{O}_{Y, \overline{y}}$-module, see Algebra, Lemma 10.39.15. Thus (2) is a special case of (3). Finally, (3) follows from Algebra, Lemma 10.39.10. $\square$

Sometimes the base change happens “up on top”. Here is a precise statement.

Lemma 67.31.5. Let $S$ be a scheme. Let $f : X \to Y$, $g : Y \to Z$ be morphisms of algebraic spaces over $S$. Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$. Let $x \in |X|$ with image $y \in |Y|$. If $f$ is flat at $x$, then

\[ \mathcal{G}\text{ flat over }Z\text{ at }y \Leftrightarrow f^*\mathcal{G}\text{ flat over }Z\text{ at }x. \]

In particular: If $f$ is surjective and flat, then $\mathcal{G}$ is flat over $Z$, if and only if $f^*\mathcal{G}$ is flat over $Z$.

Proof. Pick a geometric point $\overline{x}$ of $X$ and denote $\overline{y}$ the image in $Y$ and $\overline{z}$ the image in $Z$. Via the characterization of flatness in Lemmas 67.31.1 and 67.30.8 and the description of the stalk of $f^*\mathcal{G}$ at $\overline{x}$ of Properties of Spaces, Lemma 66.29.5 the lemma reduces to a purely algebraic question on the local ring maps $\mathcal{O}_{Z, \overline{z}} \to \mathcal{O}_{Y, \overline{y}} \to \mathcal{O}_{X, \overline{x}}$ and the module $\mathcal{G}_{\overline{y}}$. This algebraic statement is Algebra, Lemma 10.39.9. $\square$

Lemma 67.31.6. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Assume $f$ locally finite presentation, $\mathcal{F}$ of finite type, $X = \text{Supp}(\mathcal{F})$, and $\mathcal{F}$ flat over $Y$. Then $f$ is universally open.

Proof. Choose a surjective étale morphism $\varphi : V \to Y$ where $V$ is a scheme. Choose a surjective étale morphism $U \to V \times _ Y X$ where $U$ is a scheme. Then it suffices to prove the lemma for $U \to V$ and the quasi-coherent $\mathcal{O}_ V$-module $\varphi ^*\mathcal{F}$. Hence this lemma follows from the case of schemes, see Morphisms, Lemma 29.25.11. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05VT. Beware of the difference between the letter 'O' and the digit '0'.