The Stacks project

15.81 Relatively pseudo-coherent modules

This section is the analogue of Section 15.80 for pseudo-coherence.

Lemma 15.81.1. Let $R$ be a ring. Let $K^\bullet $ be a complex of $R$-modules. Consider the $R$-algebra map $R[x] \to R$ which maps $x$ to zero. Then

\[ K^\bullet \otimes _{R[x]}^{\mathbf{L}} R \cong K^\bullet \oplus K^\bullet [1] \]

in $D(R)$.

Proof. Choose a K-flat resolution $P^\bullet \to K^\bullet $ over $R$ such that $P^ n$ is a flat $R$-module for all $n$, see Lemma 15.59.10. Then $P^\bullet \otimes _ R R[x]$ is a K-flat complex of $R[x]$-modules whose terms are flat $R[x]$-modules, see Lemma 15.59.3 and Algebra, Lemma 10.39.7. In particular $x : P^ n \otimes _ R R[x] \to P^ n \otimes _ R R[x]$ is injective with cokernel isomorphic to $P^ n$. Thus

\[ P^\bullet \otimes _ R R[x] \xrightarrow {x} P^\bullet \otimes _ R R[x] \]

is a double complex of $R[x]$-modules whose associated total complex is quasi-isomorphic to $P^\bullet $ and hence $K^\bullet $. Moreover, this associated total complex is a K-flat complex of $R[x]$-modules for example by Lemma 15.59.4 or by Lemma 15.59.5. Hence

\begin{align*} K^\bullet \otimes _{R[x]}^{\mathbf{L}} R & \cong \text{Tot}(P^\bullet \otimes _ R R[x] \xrightarrow {x} P^\bullet \otimes _ R R[x]) \otimes _{R[x]} R = \text{Tot}(P^\bullet \xrightarrow {0} P^\bullet ) \\ & = P^\bullet \oplus P^\bullet [1] \cong K^\bullet \oplus K^\bullet [1] \end{align*}

as desired. $\square$

Lemma 15.81.2. Let $R$ be a ring and $K^\bullet $ a complex of $R$-modules. Let $m \in \mathbf{Z}$. Consider the $R$-algebra map $R[x] \to R$ which maps $x$ to zero. Then $K^\bullet $ is $m$-pseudo-coherent as a complex of $R$-modules if and only if $K^\bullet $ is $m$-pseudo-coherent as a complex of $R[x]$-modules.

Proof. This is a special case of Lemma 15.64.11. We also prove it in another way as follows.

Note that $0 \to R[x] \to R[x] \to R \to 0$ is exact. Hence $R$ is pseudo-coherent as an $R[x]$-module. Thus one implication of the lemma follows from Lemma 15.64.11. To prove the other implication, assume that $K^\bullet $ is $m$-pseudo-coherent as a complex of $R[x]$-modules. By Lemma 15.64.12 we see that $K^\bullet \otimes ^{\mathbf{L}}_{R[x]} R$ is $m$-pseudo-coherent as a complex of $R$-modules. By Lemma 15.81.1 we see that $K^\bullet \oplus K^\bullet [1]$ is $m$-pseudo-coherent as a complex of $R$-modules. Finally, we conclude that $K^\bullet $ is $m$-pseudo-coherent as a complex of $R$-modules from Lemma 15.64.8. $\square$

Lemma 15.81.3. Let $R \to A$ be a ring map of finite type. Let $K^\bullet $ be a complex of $A$-modules. Let $m \in \mathbf{Z}$. The following are equivalent

  1. for some presentation $\alpha : R[x_1, \ldots , x_ n] \to A$ the complex $K^\bullet $ is an $m$-pseudo-coherent complex of $R[x_1, \ldots , x_ n]$-modules,

  2. for all presentations $\alpha : R[x_1, \ldots , x_ n] \to A$ the complex $K^\bullet $ is an $m$-pseudo-coherent complex of $R[x_1, \ldots , x_ n]$-modules.

In particular the same equivalence holds for pseudo-coherence.

Proof. If $\alpha : R[x_1, \ldots , x_ n] \to A$ and $\beta : R[y_1, \ldots , y_ m] \to A$ are presentations. Choose $f_ j \in R[x_1, \ldots , x_ n]$ with $\alpha (f_ j) = \beta (y_ j)$ and $g_ i \in R[y_1, \ldots , y_ m]$ with $\beta (g_ i) = \alpha (x_ i)$. Then we get a commutative diagram

\[ \xymatrix{ R[x_1, \ldots , x_ n, y_1, \ldots , y_ m] \ar[d]^{x_ i \mapsto g_ i} \ar[rr]_-{y_ j \mapsto f_ j} & & R[x_1, \ldots , x_ n] \ar[d] \\ R[y_1, \ldots , y_ m] \ar[rr] & & A } \]

After a change of coordinates the ring homomorphism $R[x_1, \ldots , x_ n, y_1, \ldots , y_ m] \to R[x_1, \ldots , x_ n]$ is isomorphic to the ring homomorphism which maps each $y_ i$ to zero. Similarly for the left vertical map in the diagram. Hence, by induction on the number of variables this lemma follows from Lemma 15.81.2. The pseudo-coherent case follows from this and Lemma 15.64.5. $\square$

Definition 15.81.4. Let $R \to A$ be a finite type ring map. Let $K^\bullet $ be a complex of $A$-modules. Let $M$ be an $A$-module. Let $m \in \mathbf{Z}$.

  1. We say $K^\bullet $ is $m$-pseudo-coherent relative to $R$ if the equivalent conditions of Lemma 15.81.3 hold.

  2. We say $K^\bullet $ is pseudo-coherent relative to $R$ if $K^\bullet $ is $m$-pseudo-coherent relative to $R$ for all $m \in \mathbf{Z}$.

  3. We say $M$ is $m$-pseudo-coherent relative to $R$ if $M[0]$ is $m$-pseudo-coherent relative to $R$.

  4. We say $M$ is pseudo-coherent relative to $R$ if $M[0]$ is pseudo-coherent relative to $R$.

Part (2) means that $K^\bullet $ is pseudo-coherent as a complex of $R[x_1, \ldots , x_ n]$-modules for any surjection $R[y_1, \ldots , y_ m] \to A$, see Lemma 15.64.5. This definition has the following pleasing property.

Lemma 15.81.5. Let $R$ be a ring. Let $A \to B$ be a finite map of finite type $R$-algebras. Let $m \in \mathbf{Z}$. Let $K^\bullet $ be a complex of $B$-modules. Then $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$ if and only if $K^\bullet $ seen as a complex of $A$-modules is $m$-pseudo-coherent (pseudo-coherent) relative to $R$.

Proof. Choose a surjection $R[x_1, \ldots , x_ n] \to A$. Choose $y_1, \ldots , y_ m \in B$ which generate $B$ over $A$. As $A \to B$ is finite each $y_ i$ satisfies a monic equation with coefficients in $A$. Hence we can find monic polynomials $P_ j(T) \in R[x_1, \ldots , x_ n][T]$ such that $P_ j(y_ j) = 0$ in $B$. Then we get a commutative diagram

\[ \xymatrix{ & R[x_1, \ldots , x_ n, y_1, \ldots , y_ m] \ar[d] \\ R[x_1, \ldots , x_ n] \ar[d] \ar[r] & R[x_1, \ldots , x_ n, y_1, \ldots , y_ m]/(P_ j(y_ j)) \ar[d] \\ A \ar[r] & B } \]

The top horizontal arrow and the top right vertical arrow satisfy the assumptions of Lemma 15.64.11. Hence $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) as a complex of $R[x_1, \ldots , x_ n]$-modules if and only if $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) as a complex of $R[x_1, \ldots , x_ n, y_1, \ldots , y_ m]$-modules. $\square$

Lemma 15.81.6. Let $R$ be a ring. Let $R \to A$ be a finite type ring map. Let $m \in \mathbf{Z}$. Let $(K^\bullet , L^\bullet , M^\bullet , f, g, h)$ be a distinguished triangle in $D(A)$.

  1. If $K^\bullet $ is $(m + 1)$-pseudo-coherent relative to $R$ and $L^\bullet $ is $m$-pseudo-coherent relative to $R$ then $M^\bullet $ is $m$-pseudo-coherent relative to $R$.

  2. If $K^\bullet , M^\bullet $ are $m$-pseudo-coherent relative to $R$, then $L^\bullet $ is $m$-pseudo-coherent relative to $R$.

  3. If $L^\bullet $ is $(m + 1)$-pseudo-coherent relative to $R$ and $M^\bullet $ is $m$-pseudo-coherent relative to $R$, then $K^\bullet $ is $(m + 1)$-pseudo-coherent relative to $R$.

Moreover, if two out of three of $K^\bullet , L^\bullet , M^\bullet $ are pseudo-coherent relative to $R$, the so is the third.

Proof. Follows immediately from Lemma 15.64.2 and the definitions. $\square$

Lemma 15.81.7. Let $R \to A$ be a finite type ring map. Let $M$ be an $A$-module. Then

  1. $M$ is $0$-pseudo-coherent relative to $R$ if and only if $M$ is a finite type $A$-module,

  2. $M$ is $(-1)$-pseudo-coherent relative to $R$ if and only if $M$ is a finitely presented relative to $R$,

  3. $M$ is $(-d)$-pseudo-coherent relative to $R$ if and only if for every surjection $R[x_1, \ldots , x_ n] \to A$ there exists a resolution

    \[ R[x_1, \ldots , x_ n]^{\oplus a_ d} \to R[x_1, \ldots , x_ n]^{\oplus a_{d - 1}} \to \ldots \to R[x_1, \ldots , x_ n]^{\oplus a_0} \to M \to 0 \]

    of length $d$, and

  4. $M$ is pseudo-coherent relative to $R$ if and only if for every presentation $R[x_1, \ldots , x_ n] \to A$ there exists an infinite resolution

    \[ \ldots \to R[x_1, \ldots , x_ n]^{\oplus a_1} \to R[x_1, \ldots , x_ n]^{\oplus a_0} \to M \to 0 \]

    by finite free $R[x_1, \ldots , x_ n]$-modules.

Proof. Follows immediately from Lemma 15.64.4 and the definitions. $\square$

Lemma 15.81.8. Let $R \to A$ be a finite type ring map. Let $m \in \mathbf{Z}$. Let $K^\bullet , L^\bullet \in D(A)$. If $K^\bullet \oplus L^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$ so are $K^\bullet $ and $L^\bullet $.

Proof. Immediate from Lemma 15.64.8 and the definitions. $\square$

Lemma 15.81.9. Let $R \to A$ be a finite type ring map. Let $m \in \mathbf{Z}$. Let $K^\bullet $ be a bounded above complex of $A$-modules such that $K^ i$ is $(m - i)$-pseudo-coherent relative to $R$ for all $i$. Then $K^\bullet $ is $m$-pseudo-coherent relative to $R$. In particular, if $K^\bullet $ is a bounded above complex of $A$-modules pseudo-coherent relative to $R$, then $K^\bullet $ is pseudo-coherent relative to $R$.

Proof. Immediate from Lemma 15.64.9 and the definitions. $\square$

Lemma 15.81.10. Let $R \to A$ be a finite type ring map. Let $m \in \mathbf{Z}$. Let $K^\bullet \in D^{-}(A)$ such that $H^ i(K^\bullet )$ is $(m - i)$-pseudo-coherent (resp. pseudo-coherent) relative to $R$ for all $i$. Then $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$.

Proof. Immediate from Lemma 15.64.10 and the definitions. $\square$

Lemma 15.81.11. Let $R$ be a ring, $f \in R$ an element, $R_ f \to A$ is a finite type ring map, $g \in A$, and $K^\bullet $ a complex of $A$-modules. If $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R_ f$, then $K^\bullet \otimes _ A A_ g$ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$.

Proof. First we show that $K^\bullet $ is $m$-pseudo-coherent relative to $R$. Namely, suppose $R_ f[x_1, \ldots , x_ n] \to A$ is surjective. Write $R_ f = R[x_0]/(fx_0 - 1)$. Then $R[x_0, x_1, \ldots , x_ n] \to A$ is surjective, and $R_ f[x_1, \ldots , x_ n]$ is pseudo-coherent as an $R[x_0, \ldots , x_ n]$-module. Hence by Lemma 15.64.11 we see that $K^\bullet $ is $m$-pseudo-coherent as a complex of $R[x_0, x_1, \ldots , x_ n]$-modules.

Choose an element $g' \in R[x_0, x_1, \ldots , x_ n]$ which maps to $g \in A$. By Lemma 15.64.12 we see that

\begin{align*} K^\bullet \otimes _{R[x_0, x_1, \ldots , x_ n]}^{\mathbf{L}} R[x_0, x_1, \ldots , x_ n, \frac{1}{g'}] & = K^\bullet \otimes _{R[x_0, x_1, \ldots , x_ n]} R[x_0, x_1, \ldots , x_ n, \frac{1}{g'}] \\ & = K^\bullet \otimes _ A A_ f \end{align*}

is $m$-pseudo-coherent as a complex of $R[x_0, x_1, \ldots , x_ n, \frac{1}{g'}]$-modules. write

\[ R[x_0, x_1, \ldots , x_ n, \frac{1}{g'}] = R[x_0, \ldots , x_ n, x_{n + 1}]/(x_{n + 1}g' - 1). \]

As $R[x_0, x_1, \ldots , x_ n, \frac{1}{g'}]$ is pseudo-coherent as a $R[x_0, \ldots , x_ n, x_{n + 1}]$-module we conclude (see Lemma 15.64.11) that $K^\bullet \otimes _ A A_ g$ is $m$-pseudo-coherent as a complex of $R[x_0, \ldots , x_ n, x_{n + 1}]$-modules as desired. $\square$

Lemma 15.81.12. Let $R \to A$ be a finite type ring map. Let $m \in \mathbf{Z}$. Let $K^\bullet $ be a complex of $A$-modules which is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$. Let $R \to R'$ be a ring map such that $A$ and $R'$ are Tor independent over $R$. Set $A' = A \otimes _ R R'$. Then $K^\bullet \otimes _ A^{\mathbf{L}} A'$ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R'$.

Proof. Choose a surjection $R[x_1, \ldots , x_ n] \to A$. Note that

\[ K^\bullet \otimes _ A^{\mathbf{L}} A' = K^\bullet \otimes _ R^{\mathbf{L}} R' = K^\bullet \otimes _{R[x_1, \ldots , x_ n]}^{\mathbf{L}} R'[x_1, \ldots , x_ n] \]

by Lemma 15.61.2 applied twice. Hence we win by Lemma 15.64.12. $\square$

Lemma 15.81.13. Let $R \to A \to B$ be finite type ring maps. Let $m \in \mathbf{Z}$. Let $K^\bullet $ be a complex of $A$-modules. Assume $B$ as a $B$-module is pseudo-coherent relative to $A$. If $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$, then $K^\bullet \otimes _ A^{\mathbf{L}} B$ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$.

Proof. Choose a surjection $A[y_1, \ldots , y_ m] \to B$. Choose a surjection $R[x_1, \ldots , x_ n] \to A$. Combined we get a surjection $R[x_1, \ldots , x_ n, y_1, \ldots y_ m] \to B$. Choose a resolution $E^\bullet \to B$ of $B$ by a complex of finite free $A[y_1, \ldots , y_ n]$-modules (which is possible by our assumption on the ring map $A \to B$). We may assume that $K^\bullet $ is a bounded above complex of flat $A$-modules. Then

\begin{align*} K^\bullet \otimes _ A^{\mathbf{L}} B & = \text{Tot}(K^\bullet \otimes _ A B[0]) \\ & = \text{Tot}(K^\bullet \otimes _ A A[y_1, \ldots , y_ m] \otimes _{A[y_1, \ldots , y_ m]} B[0]) \\ & \cong \text{Tot}\left( (K^\bullet \otimes _ A A[y_1, \ldots , y_ m]) \otimes _{A[y_1, \ldots , y_ m]} E^\bullet \right) \\ & = \text{Tot}(K^\bullet \otimes _ A E^\bullet ) \end{align*}

in $D(A[y_1, \ldots , y_ m])$. The quasi-isomorphism $\cong $ comes from an application of Lemma 15.59.7. Thus we have to show that $\text{Tot}(K^\bullet \otimes _ A E^\bullet )$ is $m$-pseudo-coherent as a complex of $R[x_1, \ldots , x_ n, y_1, \ldots y_ m]$-modules. Note that $\text{Tot}(K^\bullet \otimes _ A E^\bullet )$ has a filtration by subcomplexes with successive quotients the complexes $K^\bullet \otimes _ A E^ i[-i]$. Note that for $i \ll 0$ the complexes $K^\bullet \otimes _ A E^ i[-i]$ have zero cohomology in degrees $\leq m$ and hence are $m$-pseudo-coherent (over any ring). Hence, applying Lemma 15.81.6 and induction, it suffices to show that $K^\bullet \otimes _ A E^ i[-i]$ is pseudo-coherent relative to $R$ for all $i$. Note that $E^ i = 0$ for $i > 0$. Since also $E^ i$ is finite free this reduces to proving that $K^\bullet \otimes _ A A[y_1, \ldots , y_ m]$ is $m$-pseudo-coherent relative to $R$ which follows from Lemma 15.81.12 for instance. $\square$

Lemma 15.81.14. Let $R \to A \to B$ be finite type ring maps. Let $m \in \mathbf{Z}$. Let $M$ be an $A$-module. Assume $B$ is flat over $A$ and $B$ as a $B$-module is pseudo-coherent relative to $A$. If $M$ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$, then $M \otimes _ A B$ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$.

Proof. Immediate from Lemma 15.81.13. $\square$

Lemma 15.81.15. Let $R$ be a ring. Let $A \to B$ be a map of finite type $R$-algebras. Let $m \in \mathbf{Z}$. Let $K^\bullet $ be a complex of $B$-modules. Assume $A$ is pseudo-coherent relative to $R$. Then the following are equivalent

  1. $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $A$, and

  2. $K^\bullet $ is $m$-pseudo-coherent (resp. pseudo-coherent) relative to $R$.

Proof. Choose a surjection $R[x_1, \ldots , x_ n] \to A$. Choose a surjection $A[y_1, \ldots , y_ m] \to B$. Then we get a surjection

\[ R[x_1, \ldots , x_ n, y_1, \ldots , y_ m] \to A[y_1, \ldots , y_ m] \]

which is a flat base change of $R[x_1, \ldots , x_ n] \to A$. By assumption $A$ is a pseudo-coherent module over $R[x_1, \ldots , x_ n]$ hence by Lemma 15.64.13 we see that $A[y_1, \ldots , y_ m]$ is pseudo-coherent over $R[x_1, \ldots , x_ n, y_1, \ldots , y_ m]$. Thus the lemma follows from Lemma 15.64.11 and the definitions. $\square$

Lemma 15.81.16. Let $R \to A$ be a finite type ring map. Let $K^\bullet $ be a complex of $A$-modules. Let $m \in \mathbf{Z}$. Let $f_1, \ldots , f_ r \in A$ generate the unit ideal. The following are equivalent

  1. each $K^\bullet \otimes _ A A_{f_ i}$ is $m$-pseudo-coherent relative to $R$, and

  2. $K^\bullet $ is $m$-pseudo-coherent relative to $R$.

The same equivalence holds for pseudo-coherence relative to $R$.

Proof. The implication (2) $\Rightarrow $ (1) is in Lemma 15.81.11. Assume (1). Write $1 = \sum f_ ig_ i$ in $A$. Choose a surjection $R[x_1, \ldots , x_ n, y_1, \ldots , y_ r, z_1, \ldots , z_ r] \to A$. such that $y_ i$ maps to $f_ i$ and $z_ i$ maps to $g_ i$. Then we see that there exists a surjection

\[ P = R[x_1, \ldots , x_ n, y_1, \ldots , y_ r, z_1, \ldots , z_ r]/(\sum y_ iz_ i - 1) \longrightarrow A. \]

Note that $P$ is pseudo-coherent as an $R[x_1, \ldots , x_ n, y_1, \ldots , y_ r, z_1, \ldots , z_ r]$-module and that $P[1/y_ i]$ is pseudo-coherent as an $R[x_1, \ldots , x_ n, y_1, \ldots , y_ r, z_1, \ldots , z_ r, 1/y_ i]$-module. Hence by Lemma 15.64.11 we see that $K^\bullet \otimes _ A A_{f_ i}$ is an $m$-pseudo-coherent complex of $P[1/y_ i]$-modules for each $i$. Thus by Lemma 15.64.14 we see that $K^\bullet $ is pseudo-coherent as a complex of $P$-modules, and Lemma 15.64.11 shows that $K^\bullet $ is pseudo-coherent as a complex of $R[x_1, \ldots , x_ n, y_1, \ldots , y_ r, z_1, \ldots , z_ r]$-modules. $\square$

Lemma 15.81.17. Let $R$ be a Noetherian ring. Let $R \to A$ be a finite type ring map. Then

  1. A complex of $A$-modules $K^\bullet $ is $m$-pseudo-coherent relative to $R$ if and only if $K^\bullet \in D^{-}(A)$ and $H^ i(K^\bullet )$ is a finite $A$-module for $i \geq m$.

  2. A complex of $A$-modules $K^\bullet $ is pseudo-coherent relative to $R$ if and only if $K^\bullet \in D^{-}(A)$ and $H^ i(K^\bullet )$ is a finite $A$-module for all $i$.

  3. An $A$-module is pseudo-coherent relative to $R$ if and only if it is finite.

Proof. Immediate consequence of Lemma 15.64.17 and the definitions. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 065E. Beware of the difference between the letter 'O' and the digit '0'.