The Stacks project

Lemma 46.4.7. Let $A$ be a ring. For $F$ a module-valued functor on $\textit{Alg}_ A$ say $(*)$ holds if for all $B \in \mathop{\mathrm{Ob}}\nolimits (\textit{Alg}_ A)$ the functor $TF(B, -)$ on $B$-modules transforms a short exact sequence of $B$-modules into a right exact sequence. Let $0 \to F \to G \to H \to 0$ be a short exact sequence of module-valued functors on $\textit{Alg}_ A$.

  1. If $(*)$ holds for $F, G$ then $(*)$ holds for $H$.

  2. If $(*)$ holds for $F, H$ then $(*)$ holds for $G$.

  3. If $H' \to H$ is morphism of module-valued functors on $\textit{Alg}_ A$ and $(*)$ holds for $F$, $G$, $H$, and $H'$, then $(*)$ holds for $G \times _ H H'$.

Proof. Let $B$ be given. Let $0 \to N_1 \to N_2 \to N_3 \to 0$ be a short exact sequence of $B$-modules. Part (1) follows from a diagram chase in the diagram

\[ \xymatrix{ 0 \ar[r] & TF(B, N_1) \ar[r] \ar[d] & TG(B, N_1) \ar[r] \ar[d] & TH(B, N_1) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_2) \ar[r] \ar[d] & TG(B, N_2) \ar[r] \ar[d] & TH(B, N_2) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_3) \ar[r] \ar[d] & TG(B, N_3) \ar[r] \ar[d] & TH(B, N_3) \ar[r] & 0 \\ & 0 & 0 } \]

with exact horizontal rows and exact columns involving $TF$ and $TG$. To prove part (2) we do a diagram chase in the diagram

\[ \xymatrix{ 0 \ar[r] & TF(B, N_1) \ar[r] \ar[d] & TG(B, N_1) \ar[r] \ar[d] & TH(B, N_1) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_2) \ar[r] \ar[d] & TG(B, N_2) \ar[r] \ar[d] & TH(B, N_2) \ar[r] \ar[d] & 0 \\ 0 \ar[r] & TF(B, N_3) \ar[r] \ar[d] & TG(B, N_3) \ar[r] & TH(B, N_3) \ar[r] \ar[d] & 0 \\ & 0 & & 0 } \]

with exact horizontal rows and exact columns involving $TF$ and $TH$. Part (3) follows from part (2) as $G \times _ H H'$ sits in the exact sequence $0 \to F \to G \times _ H H' \to H' \to 0$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06ZF. Beware of the difference between the letter 'O' and the digit '0'.