The Stacks project

Lemma 46.8.4. Let $A$ be a ring.

  1. Let $L \to M \to N$ be a universally exact sequence of $A$-modules. Let $K = \mathop{\mathrm{Im}}(M \to N)$. Then $K \to N$ is universally injective.

  2. Any universally exact complex can be split into universally exact short exact sequences.

Proof. Proof of (1). For any $A$-module $T$ the sequence $L \otimes _ A T \to M \otimes _ A T \to K \otimes _ A T \to 0$ is exact by right exactness of $\otimes $. By assumption the sequence $L \otimes _ A T \to M \otimes _ A T \to N \otimes _ A T$ is exact. Combined this shows that $K \otimes _ A T \to N \otimes _ A T$ is injective.

Part (2) means the following: Suppose that $M^\bullet $ is a universally exact complex of $A$-modules. Set $K^ i = \mathop{\mathrm{Ker}}(d^ i) \subset M^ i$. Then the short exact sequences $0 \to K^ i \to M^ i \to K^{i + 1} \to 0$ are universally exact. This follows immediately from part (1). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0701. Beware of the difference between the letter 'O' and the digit '0'.