The Stacks project

Lemma 67.8.10. Let $f : X \to Y$ be a morphism of algebraic spaces over a scheme $S$.

  1. If $X$ is quasi-compact and $Y$ is quasi-separated, then $f$ is quasi-compact.

  2. If $X$ is quasi-compact and quasi-separated and $Y$ is quasi-separated, then $f$ is quasi-compact and quasi-separated.

  3. A fibre product of quasi-compact and quasi-separated algebraic spaces is quasi-compact and quasi-separated.

Proof. Part (1) follows from Lemma 67.8.9 with $Z = S = \mathop{\mathrm{Spec}}(\mathbf{Z})$. Part (2) follows from (1) and Lemma 67.4.10. For (3) let $X \to Y$ and $Z \to Y$ be morphisms of quasi-compact and quasi-separated algebraic spaces. Then $X \times _ Y Z \to Z$ is quasi-compact and quasi-separated as a base change of $X \to Y$ using (2) and Lemmas 67.8.4 and 67.4.4. Hence $X \times _ Y Z$ is quasi-compact and quasi-separated as an algebraic space quasi-compact and quasi-separated over $Z$, see Lemmas 67.4.9 and 67.8.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 073B. Beware of the difference between the letter 'O' and the digit '0'.