The Stacks project

Lemma 37.14.3. Let $X \to X'$ be a thickening of schemes and let $X \to Y$ be an affine morphism of schemes. Then there exists a pushout

\[ \xymatrix{ X \ar[r] \ar[d]_ f & X' \ar[d]^{f'} \\ Y \ar[r] & Y' } \]

in the category of schemes. Moreover, $Y \subset Y'$ is a thickening, $X = Y \times _{Y'} X'$, and

\[ \mathcal{O}_{Y'} = \mathcal{O}_ Y \times _{f_*\mathcal{O}_ X} f'_*\mathcal{O}_{X'} \]

as sheaves on $|Y| = |Y'|$.

Proof. We first construct $Y'$ as a ringed space. Namely, as topological space we take $Y' = Y$. Denote $f' : X' \to Y'$ the map of topological spaces which equals $f$. As structure sheaf $\mathcal{O}_{Y'}$ we take the right hand side of the equation of the lemma. To see that $Y'$ is a scheme, we have to show that any point has an affine neighbourhood. Since the formation of the fibre product of sheaves commutes with restricting to opens, we may assume $Y$ is affine. Then $X$ is affine (as $f$ is affine) and $X'$ is affine as well (see Lemma 37.2.3). Say $Y \leftarrow X \rightarrow X'$ corresponds to $B \rightarrow A \leftarrow A'$. Set $B' = B \times _ A A'$; this is the global sections of $\mathcal{O}_{Y'}$. As $A' \to A$ is surjective with locally nilpotent kernel we see that $B' \to B$ is surjective with locally nilpotent kernel. Hence $\mathop{\mathrm{Spec}}(B') = \mathop{\mathrm{Spec}}(B)$ (as topological spaces). We claim that $Y' = \mathop{\mathrm{Spec}}(B')$. To see this we will show for $g' \in B'$ with image $g \in B$ that $\mathcal{O}_{Y'}(D(g)) = B'_{g'}$. Namely, by More on Algebra, Lemma 15.5.3 we see that

\[ (B')_{g'} = B_ g \times _{A_ h} A'_{h'} \]

where $h \in A$, $h' \in A'$ are the images of $g'$. Since $B_ g$, resp. $A_ h$, resp. $A'_{h'}$ is equal to $\mathcal{O}_ Y(D(g))$, resp. $f_*\mathcal{O}_ X(D(g))$, resp. $f'_*\mathcal{O}_{X'}(D(g))$ the claim follows.

It remains to show that $Y'$ is the pushout. The discussion above shows the scheme $Y'$ has an affine open covering $Y' = \bigcup W'_ i$ such that the corresponding opens $U'_ i \subset X'$, $W_ i \subset Y$, and $U_ i \subset X$ are affine open. Moreover, if $A'_ i$, $B_ i$, $A_ i$ are the rings corresponding to $U'_ i$, $W_ i$, $U_ i$, then $W'_ i$ corresponds to $B_ i \times _{A_ i} A'_ i$. Thus we can apply Lemmas 37.14.1 and 37.14.2 to conclude our construction is a pushout in the category of schemes. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 37.14: Pushouts in the category of schemes, I

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07RT. Beware of the difference between the letter 'O' and the digit '0'.