The Stacks project

Lemma 98.23.6. Let $S$ and $\mathcal{X}$ be as in Definition 98.23.5 and let $\mathcal{X}$ be endowed with a naive obstruction theory. Let $A \to B$ and $y \to x$ be as in (3). Let $k$ be a $B$-algebra which is a field. Then the functoriality map $E_ x \to E_ y$ induces bijections

\[ H^ i(E_ x \otimes _ A^{\mathbf{L}} k) \to H^ i(E_ y \otimes _ B^{\mathbf{L}} k) \]

for $i = 0, 1$.

Proof. Let $z = x|_{\mathop{\mathrm{Spec}}(k)}$. Then (RS*) implies that

\[ \textit{Lift}(x, A[k]) = \textit{Lift}(z, k[k]) \quad \text{and}\quad \textit{Lift}(y, B[k]) = \textit{Lift}(z, k[k]) \]

because $A[k] = A \times _ k k[k]$ and $B[k] = B \times _ k k[k]$. Hence the properties of a naive obstruction theory imply that the functoriality map $E_ x \to E_ y$ induces bijections $\mathop{\mathrm{Ext}}\nolimits ^ i_ A(E_ x, k) \to \text{Ext}^ i_ B(E_ y, k)$ for $i = -1, 0$. By Lemma 98.23.1 our maps $H^ i(E_ x \otimes _ A^{\mathbf{L}} k) \to H^ i(E_ y \otimes _ B^{\mathbf{L}} k)$, $i = 0, 1$ induce isomorphisms on dual vector spaces hence are isomorphisms. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07YT. Beware of the difference between the letter 'O' and the digit '0'.