# The Stacks Project

## Tag 080Z

Lemma 15.8.8. Let $R$ be a local ring. Let $M$ be a finite $R$-module. Let $k \geq 0$. Assume that $\text{Fit}_k(M) = (f)$ for some $f \in R$. Let $M'$ be the quotient of $M$ by $\{x \in M \mid fx = 0\}$. Then $M'$ can be generated by $k$ elements.

Proof. Choose generators $x_1, \ldots, x_n \in M$ corresponding to the surjection $R^{\oplus n} \to M$. Since $R$ is local if a set of elements $E \subset (f)$ generates $(f)$, then some $e \in E$ generates $(f)$, see Algebra, Lemma 10.19.1. Hence we may pick $z_1, \ldots, z_{n - k}$ in the kernel of $R^{\oplus n} \to M$ such that some $(n - k) \times (n - k)$ minor of the $n \times (n - k)$ matrix $A = (z_{ij})$ generates $(f)$. After renumbering the $x_i$ we may assume the first minor $\det(z_{ij})_{1 \leq i, j \leq n - k}$ generates $(f)$, i.e., $\det(z_{ij})_{1 \leq i, j \leq n - k} = uf$ for some unit $u \in R$. Every other minor is a multiple of $f$. By Algebra, Lemma 10.14.5 there exists a $n - k \times n - k$ matrix $B$ such that $$AB = f \left( \begin{matrix} u 1_{n - k \times n - k} \\ C \end{matrix} \right)$$ for some matrix $C$ with coefficients in $R$. This implies that for every $i \leq n - k$ the element $y_i = ux_i + \sum_j c_{ji}x_j$ is annihilated by $f$. Since $M/\sum Ry_i$ is generated by the images of $x_{n - k + 1}, \ldots, x_n$ we win. $\square$

The code snippet corresponding to this tag is a part of the file more-algebra.tex and is located in lines 1540–1546 (see updates for more information).

\begin{lemma}
\label{lemma-principal-fitting-ideal}
Let $R$ be a local ring. Let $M$ be a finite $R$-module. Let $k \geq 0$.
Assume that $\text{Fit}_k(M) = (f)$ for some $f \in R$.
Let $M'$ be the quotient of $M$ by $\{x \in M \mid fx = 0\}$. Then
$M'$ can be generated by $k$ elements.
\end{lemma}

\begin{proof}
Choose generators $x_1, \ldots, x_n \in M$ corresponding to the
surjection $R^{\oplus n} \to M$. Since $R$ is local if a set
of elements $E \subset (f)$ generates $(f)$, then some $e \in E$ generates
$(f)$, see Algebra, Lemma \ref{algebra-lemma-NAK}. Hence we may pick
$z_1, \ldots, z_{n - k}$ in the kernel of $R^{\oplus n} \to M$ such
that some $(n - k) \times (n - k)$ minor of the $n \times (n - k)$
matrix $A = (z_{ij})$ generates $(f)$. After renumbering the $x_i$ we may
assume the first minor $\det(z_{ij})_{1 \leq i, j \leq n - k}$
generates $(f)$, i.e., $\det(z_{ij})_{1 \leq i, j \leq n - k} = uf$
for some unit $u \in R$. Every other minor is a multiple of $f$.
By Algebra, Lemma \ref{algebra-lemma-matrix-right-inverse} there exists a
$n - k \times n - k$ matrix $B$ such that
$$AB = f \left( \begin{matrix} u 1_{n - k \times n - k} \\ C \end{matrix} \right)$$
for some matrix $C$ with coefficients in $R$. This implies that for every
$i \leq n - k$ the element $y_i = ux_i + \sum_j c_{ji}x_j$ is annihilated
by $f$. Since $M/\sum Ry_i$ is generated by the images of
$x_{n - k + 1}, \ldots, x_n$ we win.
\end{proof}

There are no comments yet for this tag.

## Add a comment on tag 080Z

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).