The Stacks project

Lemma 76.37.5. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $V \subset Y$ be an open subspace. If

  1. $f$ is separated, locally of finite type, and flat,

  2. $f^{-1}(V) \to V$ is an isomorphism, and

  3. $V \to Y$ is quasi-compact and scheme theoretically dense,

then $f$ is an open immersion.

Proof. Applying Lemma 76.37.2 we see that $f$ is locally of finite presentation. Applying Lemma 76.37.3 we see that $f$ has relative dimension $\leq 0$. By Morphisms of Spaces, Lemma 67.34.6 this implies that $f$ is locally quasi-finite. By Morphisms of Spaces, Lemma 67.51.1 this implies that $f$ is representable. By Descent on Spaces, Lemma 74.11.14 we can check whether $f$ is an open immersion étale locally on $Y$. Hence we may assume that $Y$ is a scheme. Since $f$ is representable, we reduce to the case of schemes which is More on Flatness, Lemma 38.11.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0879. Beware of the difference between the letter 'O' and the digit '0'.