## Tag `08WH`

Chapter 34: Descent > Section 34.4: Descent for universally injective morphisms

Definition 34.4.2. A

split equalizeris a diagram (34.4.1.1) with $g_1 \circ f = g_2 \circ f$ for which there exist auxiliary morphisms $h : B \to A$ and $i : C \to B$ such that \begin{equation} \tag{34.4.2.1} h \circ f = 1_A, \quad f \circ h = i \circ g_1, \quad i \circ g_2 = 1_B. \end{equation}

The code snippet corresponding to this tag is a part of the file `descent.tex` and is located in lines 860–869 (see updates for more information).

```
\begin{definition}
\label{definition-split-equalizer}
A {\it split equalizer} is a diagram (\ref{equation-equalizer}) with
$g_1 \circ f = g_2 \circ f$ for which there exist auxiliary morphisms
$h : B \to A$ and $i : C \to B$ such that
\begin{equation}
\label{equation-split-equalizer-conditions}
h \circ f = 1_A, \quad f \circ h = i \circ g_1, \quad i \circ g_2 = 1_B.
\end{equation}
\end{definition}
```

## Comments (0)

## Add a comment on tag `08WH`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There are also 4 comments on Section 34.4: Descent.