The Stacks project

Lemma 47.4.2. Let $R$ be a ring and let $M$ be an $R$-module. If a projective cover of $M$ exists, then it is unique up to isomorphism.

Proof. Let $P \to M$ and $P' \to M$ be projective covers. Because $P$ is a projective $R$-module and $P' \to M$ is surjective, we can find an $R$-module map $\alpha : P \to P'$ compatible with the maps to $M$. Since $P' \to M$ is essential, we see that $\alpha $ is surjective. As $P'$ is a projective $R$-module we can choose a direct sum decomposition $P = \mathop{\mathrm{Ker}}(\alpha ) \oplus P'$. Since $P' \to M$ is surjective and since $P \to M$ is essential we conclude that $\mathop{\mathrm{Ker}}(\alpha )$ is zero as desired. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 47.4: Projective covers

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08XZ. Beware of the difference between the letter 'O' and the digit '0'.