The Stacks project

15.97 Taking limits of complexes

In this section we discuss what happens when we have a “formal deformation” of a complex and we take its limit. We will consider two cases

  1. we have a limit $A = \mathop{\mathrm{lim}}\nolimits A_ n$ of an inverse system of rings whose transition maps are surjective with locally nilpotent kernels and objects $K_ n \in D(A_ n)$ which fit together in the sense that $K_ n = K_{n + 1} \otimes _{A_{n + 1}}^\mathbf {L} A_ n$, or

  2. we have a ring $A$, an ideal $I$, and objects $K_ n \in D(A/I^ n)$ which fit together in the sense that $K_ n = K_{n + 1} \otimes _{A/I^{n + 1}}^\mathbf {L} A/I^ n$.

Under additional hypotheses we can show that $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ reproduces the system in the sense that $K_ n = K \otimes _ A^\mathbf {L} A_ n$ or $K_ n = K \otimes _ A^\mathbf {L} A/I^ n$.

Lemma 15.97.1. Let $A = \mathop{\mathrm{lim}}\nolimits A_ n$ be a limit of an inverse system $(A_ n)$ of rings. Suppose given $K_ n \in D(A_ n)$ and maps $K_{n + 1} \to K_ n$ in $D(A_{n + 1})$. Assume

  1. the transition maps $A_{n + 1} \to A_ n$ are surjective with locally nilpotent kernels,

  2. $K_1$ is pseudo-coherent, and

  3. the maps induce isomorphisms $K_{n + 1} \otimes _{A_{n + 1}}^\mathbf {L} A_ n \to K_ n$.

Then $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ is a pseudo-coherent object of $D(A)$ and $K \otimes _ A^\mathbf {L} A_ n \to K_ n$ is an isomorphism for all $n$.

Proof. By assumption we can find a bounded above complex of finite free $A_1$-modules $P_1^\bullet $ representing $K_1$, see Definition 15.64.1. By Lemma 15.75.4 we can, by induction on $n > 1$, find complexes $P_ n^\bullet $ of finite free $A_ n$-modules representing $K_ n$ and maps $P_ n^\bullet \to P_{n - 1}^\bullet $ representing the maps $K_ n \to K_{n - 1}$ inducing isomorphisms (!) of complexes $P_ n^\bullet \otimes _{A_ n} A_{n - 1} \to P_{n - 1}^\bullet $. Thus $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ is represented by $P^\bullet = \mathop{\mathrm{lim}}\nolimits P_ n^\bullet $, see Lemma 15.87.1 and Remark 15.87.6. Since $P_ n^ i$ is a finite free $A_ n$-module for each $n$ and $A = \mathop{\mathrm{lim}}\nolimits A_ n$ we see that $P^ i$ is finite free of the same rank as $P_1^ i$ for each $i$. This means that $K$ is pseudo-coherent. It also follows that $K \otimes _ A^\mathbf {L} A_ n$ is represented by $P^\bullet \otimes _ A A_ n = P_ n^\bullet $ which proves the final assertion. $\square$

Lemma 15.97.2. Let $A$ be a ring and $I \subset A$ an ideal. Suppose given $K_ n \in D(A/I^ n)$ and maps $K_{n + 1} \to K_ n$ in $D(A/I^{n + 1})$. Assume

  1. $A$ is $I$-adically complete,

  2. $K_1$ is pseudo-coherent, and

  3. the maps induce isomorphisms $K_{n + 1} \otimes _{A/I^{n + 1}}^\mathbf {L} A/I^ n \to K_ n$.

Then $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ is a pseudo-coherent, derived complete object of $D(A)$ and $K \otimes _ A^\mathbf {L} A/I^ n \to K_ n$ is an isomorphism for all $n$.

Proof. We already know that $K$ is pseudo-coherent and that $K \otimes _ A^\mathbf {L} A/I^ n \to K_ n$ is an isomorphism for all $n$, see Lemma 15.97.1. Finally, $K$ is derived complete by Lemma 15.91.14. $\square$

reference

Lemma 15.97.3. Let $A = \mathop{\mathrm{lim}}\nolimits A_ n$ be a limit of an inverse system $(A_ n)$ of rings. Suppose given $K_ n \in D(A_ n)$ and maps $K_{n + 1} \to K_ n$ in $D(A_{n + 1})$. Assume

  1. the transition maps $A_{n + 1} \to A_ n$ are surjective with locally nilpotent kernels,

  2. $K_1$ is a perfect object, and

  3. the maps induce isomorphisms $K_{n + 1} \otimes _{A_{n + 1}}^\mathbf {L} A_ n \to K_ n$.

Then $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ is a perfect object of $D(A)$ and $K \otimes _ A^\mathbf {L} A_ n \to K_ n$ is an isomorphism for all $n$.

Proof. We already know that $K$ is pseudo-coherent and that $K \otimes _ A^\mathbf {L} A_ n \to K_ n$ is an isomorphism for all $n$ by Lemma 15.97.1. Thus it suffices to show that $H^ i(K \otimes _ A^\mathbf {L} \kappa ) = 0$ for $i \ll 0$ and every surjective map $A \to \kappa $ whose kernel is a maximal ideal $\mathfrak m$, see Lemma 15.77.3. Any element of $A$ which maps to a unit in $A_1$ is a unit in $A$ by Algebra, Lemma 10.32.4 and hence $\mathop{\mathrm{Ker}}(A \to A_1)$ is contained in the Jacobson radical of $A$ by Algebra, Lemma 10.19.1. Hence $A \to \kappa $ factors as $A \to A_1 \to \kappa $. Hence

\[ K \otimes _ A^\mathbf {L} \kappa = K \otimes _ A^\mathbf {L} A_1 \otimes _{A_1}^\mathbf {L} \kappa = K_1 \otimes _{A_1}^\mathbf {L} \kappa \]

and we get what we want as $K_1$ has finite tor dimension by Lemma 15.74.2. $\square$

Lemma 15.97.4. Let $A$ be a ring and $I \subset A$ an ideal. Suppose given $K_ n \in D(A/I^ n)$ and maps $K_{n + 1} \to K_ n$ in $D(A/I^{n + 1})$. Assume

  1. $A$ is $I$-adically complete,

  2. $K_1$ is a perfect object, and

  3. the maps induce isomorphisms $K_{n + 1} \otimes _{A/I^{n + 1}}^\mathbf {L} A/I^ n \to K_ n$.

Then $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ is a perfect, derived complete object of $D(A)$ and $K \otimes _ A^\mathbf {L} A/I^ n \to K_ n$ is an isomorphism for all $n$.

Proof. Combine Lemmas 15.97.3 and 15.97.2 (to get derived completeness). $\square$

We do not know if the following lemma holds for unbounded complexes.

Lemma 15.97.5. Let $A$ be a ring and $I \subset A$ an ideal. Suppose given $K_ n \in D(A/I^ n)$ and maps $K_{n + 1} \to K_ n$ in $D(A/I^{n + 1})$. If

  1. $A$ is Noetherian,

  2. $K_1$ is bounded above, and

  3. the maps induce isomorphisms $K_{n + 1} \otimes _{A/I^{n + 1}}^\mathbf {L} A/I^ n \to K_ n$,

then $K = R\mathop{\mathrm{lim}}\nolimits K_ n$ is a derived complete object of $D^-(A)$ and $K \otimes _ A^\mathbf {L} A/I^ n \to K_ n$ is an isomorphism for all $n$.

Proof. The object $K$ of $D(A)$ is derived complete by Lemma 15.91.14.

Suppose that $H^ i(K_1) = 0$ for $i > b$. Then we can find a complex of free $A/I$-modules $P_1^\bullet $ representing $K_1$ with $P_1^ i = 0$ for $i > b$. By Lemma 15.75.3 we can, by induction on $n > 1$, find complexes $P_ n^\bullet $ of free $A/I^ n$-modules representing $K_ n$ and maps $P_ n^\bullet \to P_{n - 1}^\bullet $ representing the maps $K_ n \to K_{n - 1}$ inducing isomorphisms (!) of complexes $P_ n^\bullet /I^{n - 1}P_ n^\bullet \to P_{n - 1}^\bullet $.

Thus we have arrived at the situation where $R\mathop{\mathrm{lim}}\nolimits K_ n$ is represented by $P^\bullet = \mathop{\mathrm{lim}}\nolimits P_ n^\bullet $, see Lemma 15.87.1 and Remark 15.87.6. The complexes $P_ n^\bullet $ are uniformly bounded above complexes of flat $A/I^ n$-modules and the transition maps are termwise surjective. Then $P^\bullet $ is a bounded above complex of flat $A$-modules by Lemma 15.27.4. It follows that $K \otimes _ A^\mathbf {L} A/I^ t$ is represented by $P^\bullet \otimes _ A A/I^ t$. We have $P^\bullet \otimes _ A A/I^ t = \mathop{\mathrm{lim}}\nolimits P_ n^\bullet \otimes _ A A/I^ t$ termwise by Lemma 15.27.4. The transition maps $P_{n + 1}^\bullet \otimes _ A A/I^ t \to P_ n^\bullet \otimes _ A A/I^ t$ are isomorphisms for $n \geq t$ by our choice of $P_ n^\bullet $, hence we have $\mathop{\mathrm{lim}}\nolimits P_ n^\bullet \otimes _ A A/I^ t = P_ t^\bullet \otimes _ A A/I^ t = P_ t^\bullet $. Since $P_ t^\bullet $ represents $K_ t$, we see that $K \otimes _ A^\mathbf {L} A/I^ t \to K_ t$ is an isomorphism. $\square$

Here is a different type of result.

reference

Lemma 15.97.6 (Kollár-Kovács). Let $I$ be an ideal of a Noetherian ring $A$. Let $K \in D(A)$. Set $K_ n = K \otimes _ A^\mathbf {L} A/I^ n$. Assume for all $i \in \mathbf{Z}$ we have

  1. $H^ i(K)$ is a finite $A$-module, and

  2. the system $H^ i(K_ n)$ satisfies Mittag-Leffler.

Then $\mathop{\mathrm{lim}}\nolimits H^ i(K)/I^ nH^ i(K)$ is equal to $\mathop{\mathrm{lim}}\nolimits H^ i(K_ n)$ for all $i \in \mathbf{Z}$.

Proof. Recall that $K^\wedge = R\mathop{\mathrm{lim}}\nolimits K_ n$ is the derived completion of $K$, see Proposition 15.94.2. By Lemma 15.94.4 we have $H^ i(K^\wedge ) = \mathop{\mathrm{lim}}\nolimits H^ i(K)/I^ nH^ i(K)$. By Lemma 15.87.4 we get short exact sequences

\[ 0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{i - 1}(K_ n) \to H^ i(K^\wedge ) \to \mathop{\mathrm{lim}}\nolimits H^ i(K_ n) \to 0 \]

The Mittag-Leffler condition guarantees that the left terms are zero (Lemma 15.87.1) and we conclude the lemma is true. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09B6. Beware of the difference between the letter 'O' and the digit '0'.