The Stacks project

Lemma 36.8.1. Let $X$ be a Noetherian scheme. Let $\mathcal{J}$ be an injective object of $\mathit{QCoh}(\mathcal{O}_ X)$. Then $\mathcal{J}$ is a flasque sheaf of $\mathcal{O}_ X$-modules.

Proof. Let $U \subset X$ be an open subset and let $s \in \mathcal{J}(U)$ be a section. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure on $X \setminus U$ (see Schemes, Definition 26.12.5). By Cohomology of Schemes, Lemma 30.10.5 the section $s$ corresponds to a map $\sigma : \mathcal{I}^ n \to \mathcal{J}$ for some $n$. As $\mathcal{J}$ is an injective object of $\mathit{QCoh}(\mathcal{O}_ X)$ we can extend $\sigma $ to a map $\tilde s : \mathcal{O}_ X \to \mathcal{J}$. Then $\tilde s$ corresponds to a global section of $\mathcal{J}$ restricting to $s$. $\square$


Comments (2)

Comment #7491 by Xiaolong Liu on

should be here.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09T2. Beware of the difference between the letter 'O' and the digit '0'.