The Stacks project

Remark 12.16.3 (Warning). There are abelian categories $\mathcal{A}$ having countable direct sums but where countable direct sums are not exact. An example is the opposite of the category of abelian sheaves on $\mathbf{R}$. Namely, the category of abelian sheaves on $\mathbf{R}$ has countable products, but countable products are not exact. For such a category the functor $\text{Gr}(\mathcal{A}) \to \mathcal{A}$, $(A^ i) \mapsto \bigoplus A^ i$ described above is not exact. It is still true that $\text{Gr}(\mathcal{A})$ is equivalent to the category of graded objects $(A, k)$ of $\mathcal{A}$, but the kernel in the category of graded objects of a map $\varphi : (A, k) \to (B, k)$ is not equal to $\mathop{\mathrm{Ker}}(\varphi )$ endowed with a direct sum decomposition, but rather it is the direct sum of the kernels of the maps $k^ iA \to k^ iB$.


Comments (0)

There are also:

  • 2 comment(s) on Section 12.16: Graded objects

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AMH. Beware of the difference between the letter 'O' and the digit '0'.