The Stacks project

58.4 Functors and homomorphisms

Let $(\mathcal{C}, F)$, $(\mathcal{C}', F')$, $(\mathcal{C}'', F'')$ be Galois categories. Set $G = \text{Aut}(F)$, $G' = \text{Aut}(F')$, and $G'' = \text{Aut}(F'')$. Let $H : \mathcal{C} \to \mathcal{C}'$ and $H' : \mathcal{C}' \to \mathcal{C}''$ be exact functors. Let $h : G' \to G$ and $h' : G'' \to G'$ be the corresponding continuous homomorphism as in Lemma 58.3.11. In this section we consider the corresponding $2$-commutative diagram

58.4.0.1
\begin{equation} \label{pione-equation-translation} \vcenter { \xymatrix{ \mathcal{C} \ar[r]_ H \ar[d] & \mathcal{C}' \ar[r]_{H'} \ar[d] & \mathcal{C}'' \ar[d] \\ \textit{Finite-}G\textit{-Sets} \ar[r]^ h & \textit{Finite-}G'\textit{-Sets} \ar[r]^{h'} & \textit{Finite-}G''\textit{-Sets} } } \end{equation}

and we relate exactness properties of the sequence $1 \to G'' \to G' \to G \to 1$ to properties of the functors $H$ and $H'$.

Lemma 58.4.1. In diagram (58.4.0.1) the following are equivalent

  1. $h : G' \to G$ is surjective,

  2. $H : \mathcal{C} \to \mathcal{C}'$ is fully faithful,

  3. if $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ is connected, then $H(X)$ is connected,

  4. if $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ is connected and there is a morphism $*' \to H(X)$ in $\mathcal{C}'$, then there is a morphism $* \to X$, and

  5. for any object $X$ of $\mathcal{C}$ the map $\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(*, X) \to \mathop{\mathrm{Mor}}\nolimits _{\mathcal{C}'}(*', H(X))$ is bijective.

Here $*$ and $*'$ are final objects of $\mathcal{C}$ and $\mathcal{C}'$.

Proof. The implications (5) $\Rightarrow $ (4) and (2) $\Rightarrow $ (5) are clear.

Assume (3). Let $X$ be a connected object of $\mathcal{C}$ and let $*' \to H(X)$ be a morphism. Since $H(X)$ is connected by (3) we see that $*' \to H(X)$ is an isomorphism. Hence the $G'$-set corresponding to $H(X)$ has exactly one element, which means the $G$-set corresponding to $X$ has one element which means $X$ is isomorphic to the final object of $\mathcal{C}$, in particular there is a map $* \to X$. In this way we see that (3) $\Rightarrow $ (4).

If (1) is true, then the functor $\textit{Finite-}G\textit{-Sets} \to \textit{Finite-}G'\textit{-Sets}$ is fully faithful: in this case a map of $G$-sets commutes with the action of $G$ if and only if it commutes with the action of $G'$. Thus (1) $\Rightarrow $ (2).

If (1) is true, then for a $G$-set $X$ the $G$-orbits and $G'$-orbits agree. Thus (1) $\Rightarrow $ (3).

To finish the proof it suffices to show that (4) implies (1). If (1) is false, i.e., if $h$ is not surjective, then there is an open subgroup $U \subset G$ containing $h(G')$ which is not equal to $G$. Then the finite $G$-set $M = G/U$ has a transitive action but $G'$ has a fixed point. The object $X$ of $\mathcal{C}$ corresponding to $M$ would contradict (3). In this way we see that (3) $\Rightarrow $ (1) and the proof is complete. $\square$

Lemma 58.4.2. In diagram (58.4.0.1) the following are equivalent

  1. $h \circ h'$ is trivial, and

  2. the image of $H' \circ H$ consists of objects isomorphic to finite coproducts of final objects.

Proof. We may replace $H$ and $H'$ by the canonical functors $\textit{Finite-}G\textit{-Sets} \to \textit{Finite-}G'\textit{-Sets} \to \textit{Finite-}G''\textit{-Sets}$ determined by $h$ and $h'$. Then we are saying that the action of $G''$ on every $G$-set is trivial if and only if the homomorphism $G'' \to G$ is trivial. This is clear. $\square$

Lemma 58.4.3. In diagram (58.4.0.1) the following are equivalent

  1. the sequence $G'' \xrightarrow {h'} G' \xrightarrow {h} G \to 1$ is exact in the following sense: $h$ is surjective, $h \circ h'$ is trivial, and $\mathop{\mathrm{Ker}}(h)$ is the smallest closed normal subgroup containing $\mathop{\mathrm{Im}}(h')$,

  2. $H$ is fully faithful and an object $X'$ of $\mathcal{C}'$ is in the essential image of $H$ if and only if $H'(X')$ is isomorphic to a finite coproduct of final objects, and

  3. $H$ is fully faithful, $H \circ H'$ sends every object to a finite coproduct of final objects, and for an object $X'$ of $\mathcal{C}'$ such that $H'(X')$ is a finite coproduct of final objects there exists an object $X$ of $\mathcal{C}$ and an epimorphism $H(X) \to X'$.

Proof. By Lemmas 58.4.1 and 58.4.2 we may assume that $H$ is fully faithful, $h$ is surjective, $H' \circ H$ maps objects to disjoint unions of the final object, and $h \circ h'$ is trivial. Let $N \subset G'$ be the smallest closed normal subgroup containing the image of $h'$. It is clear that $N \subset \mathop{\mathrm{Ker}}(h)$. We may assume the functors $H$ and $H'$ are the canonical functors $\textit{Finite-}G\textit{-Sets} \to \textit{Finite-}G'\textit{-Sets} \to \textit{Finite-}G''\textit{-Sets}$ determined by $h$ and $h'$.

Suppose that (2) holds. This means that for a finite $G'$-set $X'$ such that $G''$ acts trivially, the action of $G'$ factors through $G$. Apply this to $X' = G'/U'N$ where $U'$ is a small open subgroup of $G'$. Then we see that $\mathop{\mathrm{Ker}}(h) \subset U'N$ for all $U'$. Since $N$ is closed this implies $\mathop{\mathrm{Ker}}(h) \subset N$, i.e., (1) holds.

Suppose that (1) holds. This means that $N = \mathop{\mathrm{Ker}}(h)$. Let $X'$ be a finite $G'$-set such that $G''$ acts trivially. This means that $\mathop{\mathrm{Ker}}(G' \to \text{Aut}(X'))$ is a closed normal subgroup containing $\mathop{\mathrm{Im}}(h')$. Hence $N = \mathop{\mathrm{Ker}}(h)$ is contained in it and the $G'$-action on $X'$ factors through $G$, i.e., (2) holds.

Suppose that (3) holds. This means that for a finite $G'$-set $X'$ such that $G''$ acts trivially, there is a surjection of $G'$-sets $X \to X'$ where $X$ is a $G$-set. Clearly this means the action of $G'$ on $X'$ factors through $G$, i.e., (2) holds.

The implication (2) $\Rightarrow $ (3) is immediate. This finishes the proof. $\square$

Lemma 58.4.4. In diagram (58.4.0.1) the following are equivalent

  1. $h'$ is injective, and

  2. for every connected object $X''$ of $\mathcal{C}''$ there exists an object $X'$ of $\mathcal{C}'$ and a diagram

    \[ X'' \leftarrow Y'' \rightarrow H(X') \]

    in $\mathcal{C}''$ where $Y'' \to X''$ is an epimorphism and $Y'' \to H(X')$ is a monomorphism.

Proof. We may replace $H'$ by the corresponding functor between the categories of finite $G'$-sets and finite $G''$-sets.

Assume $h' : G'' \to G'$ is injective. Let $H'' \subset G''$ be an open subgroup. Since the topology on $G''$ is the induced topology from $G'$ there exists an open subgroup $H' \subset G'$ such that $(h')^{-1}(H') \subset H''$. Then the desired diagram is

\[ G''/H'' \leftarrow G''/(h')^{-1}(H') \rightarrow G'/H' \]

Conversely, assume (2) holds for the functor $\textit{Finite-}G'\textit{-Sets} \to \textit{Finite-}G''\textit{-Sets}$. Let $g'' \in \mathop{\mathrm{Ker}}(h')$. Pick any open subgroup $H'' \subset G''$. By assumption there exists a finite $G'$-set $X'$ and a diagram

\[ G''/H'' \leftarrow Y'' \rightarrow X' \]

of $G''$-sets with the left arrow surjective and the right arrow injective. Since $g''$ is in the kernel of $h'$ we see that $g''$ acts trivially on $X'$. Hence $g''$ acts trivially on $Y''$ and hence trivially on $G''/H''$. Thus $g'' \in H''$. As this holds for all open subgroups we conclude that $g''$ is the identity element as desired. $\square$

Lemma 58.4.5. In diagram (58.4.0.1) the following are equivalent

  1. the image of $h'$ is normal, and

  2. for every connected object $X'$ of $\mathcal{C}'$ such that there is a morphism from the final object of $\mathcal{C}''$ to $H'(X')$ we have that $H'(X')$ is isomorphic to a finite coproduct of final objects.

Proof. This translates into the following statement for the continuous group homomorphism $h' : G'' \to G'$: the image of $h'$ is normal if and only if every open subgroup $U' \subset G'$ which contains $h'(G'')$ also contains every conjugate of $h'(G'')$. The result follows easily from this; some details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BTQ. Beware of the difference between the letter 'O' and the digit '0'.