The Stacks project

Lemma 10.31.9. Let $R$ be a ring and $\mathfrak p \subset R$ be a prime. There exists an $f \in R$, $f \not\in \mathfrak p$ such that $R_ f \to R_\mathfrak p$ is injective in each of the following cases

  1. $R$ is a domain,

  2. $R$ is Noetherian, or

  3. $R$ is reduced and has finitely many minimal primes.

Proof. If $R$ is a domain, then $R \subset R_\mathfrak p$, hence $f = 1$ works. If $R$ is Noetherian, then the kernel $I$ of $R \to R_\mathfrak p$ is a finitely generated ideal and we can find $f \in R$, $f \not\in \mathfrak p$ such that $IR_ f = 0$. For this $f$ the map $R_ f \to R_\mathfrak p$ is injective and $f$ works. If $R$ is reduced with finitely many minimal primes $\mathfrak p_1, \ldots , \mathfrak p_ n$, then we can choose $f \in \bigcap _{\mathfrak p_ i \not\subset \mathfrak p} \mathfrak p_ i$, $f \not\in \mathfrak p$. Indeed, if $\mathfrak {p}_ i\not\subset \mathfrak {p}$ then there exist $f_ i \in \mathfrak {p}_ i$, $f_ i \not\in \mathfrak {p}$ and $f = \prod f_ i$ works. For this $f$ we have $R_ f \subset R_\mathfrak p$ because the minimal primes of $R_ f$ correspond to minimal primes of $R_\mathfrak p$ and we can apply Lemma 10.25.2 (some details omitted). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BX1. Beware of the difference between the letter 'O' and the digit '0'.