The Stacks project

Lemma 36.35.11. Let $f : X \to S$ be a morphism of schemes. Let $E, K \in D(\mathcal{O}_ X)$. Assume

  1. $S$ is quasi-compact and quasi-separated,

  2. $f$ is proper, flat, and of finite presentation,

  3. $E$ is $S$-perfect,

  4. $K$ is pseudo-coherent.

Then there exists a pseudo-coherent $L \in D(\mathcal{O}_ S)$ such that

\[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, E) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ S) \]

and the same is true after arbitrary base change: given

\[ \vcenter { \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ S' \ar[r]^ g & S } } \quad \quad \begin{matrix} \text{cartesian, then we have } \\ Rf'_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L(g')^*K, L(g')^*E) \\ = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (Lg^*L, \mathcal{O}_{S'}) \end{matrix} \]

Proof. Since $S$ is quasi-compact and quasi-separated, the same is true for $X$. By Lemma 36.19.1 we can write $K = \text{hocolim} K_ n$ with $K_ n$ perfect and $K_ n \to K$ inducing an isomorphism on truncations $\tau _{\geq -n}$. Let $K_ n^\vee $ be the dual perfect complex (Cohomology, Lemma 20.50.5). We obtain an inverse system $\ldots \to K_3^\vee \to K_2^\vee \to K_1^\vee $ of perfect objects. By Lemma 36.35.5 we see that $K_ n^\vee \otimes _{\mathcal{O}_ X} E$ is $S$-perfect. Thus we may apply Lemma 36.35.10 to $K_ n^\vee \otimes _{\mathcal{O}_ X} E$ and we obtain an inverse system

\[ \ldots \to M_3 \to M_2 \to M_1 \]

of perfect complexes on $S$ with

\[ M_ n = Rf_*(K_ n^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} E) = Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, E) \]

Moreover, the formation of these complexes commutes with any base change, namely $Lg^*M_ n = Rf'_*((L(g')^*K_ n)^\vee \otimes _{\mathcal{O}_{X'}}^\mathbf {L} L(g')^*E) = Rf'_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L(g')^*K_ n, L(g')^*E)$.

As $K_ n \to K$ induces an isomorphism on $\tau _{\geq -n}$, we see that $K_ n \to K_{n + 1}$ induces an isomorphism on $\tau _{\geq -n}$. It follows that $K_{n + 1}^\vee \to K_ n^\vee $ induces an isomorphism on $\tau _{\leq n}$ as $K_ n^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, \mathcal{O}_ X)$. Suppose that $E$ has tor amplitude in $[a, b]$ as a complex of $f^{-1}\mathcal{O}_ Y$-modules. Then the same is true after any base change, see Lemma 36.22.8. We find that $K_{n + 1}^\vee \otimes _{\mathcal{O}_ X} E \to K_ n^\vee \otimes _{\mathcal{O}_ X} E$ induces an isomorphism on $\tau _{\leq n + a}$ and the same is true after any base change. Applying the right derived functor $Rf_*$ we conclude the maps $M_{n + 1} \to M_ n$ induce isomorphisms on $\tau _{\leq n + a}$ and the same is true after any base change. Choose a distinguished triangle

\[ M_{n + 1} \to M_ n \to C_ n \to M_{n + 1}[1] \]

Take $S'$ equal to the spectrum of the residue field at a point $s \in S$ and pull back to see that $C_ n \otimes _{\mathcal{O}_ S}^\mathbf {L} \kappa (s)$ has nonzero cohomology only in degrees $\geq n + a$. By More on Algebra, Lemma 15.75.6 we see that the perfect complex $C_ n$ has tor amplitude in $[n + a, m_ n]$ for some integer $m_ n$. In particular, the dual perfect complex $C_ n^\vee $ has tor amplitude in $[-m_ n, -n - a]$.

Let $L_ n = M_ n^\vee $ be the dual perfect complex. The conclusion from the discussion in the previous paragraph is that $L_ n \to L_{n + 1}$ induces isomorphisms on $\tau _{\geq -n - a}$. Thus $L = \text{hocolim} L_ n$ is pseudo-coherent, see Lemma 36.19.1. Since we have

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, E) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\text{hocolim} K_ n, E) = R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, E) = R\mathop{\mathrm{lim}}\nolimits K_ n^\vee \otimes _{\mathcal{O}_ X} E \]

(Cohomology, Lemma 20.51.1) and since $R\mathop{\mathrm{lim}}\nolimits $ commutes with $Rf_*$ we find that

\[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, E) = R\mathop{\mathrm{lim}}\nolimits M_ n = R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L_ n, \mathcal{O}_ S) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O}_ S) \]

This proves the formula over $S$. Since the construction of $M_ n$ is compatible with base chance, the formula continues to hold after any base change. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DJU. Beware of the difference between the letter 'O' and the digit '0'.